5 resultados para Neuro-signalling
em Universidad Politécnica de Madrid
Resumo:
Las tecnologías de vídeo en 3D han estado al alza en los últimos años, con abundantes avances en investigación unidos a una adopción generalizada por parte de la industria del cine, y una importancia creciente en la electrónica de consumo. Relacionado con esto, está el concepto de vídeo multivista, que abarca el vídeo 3D, y puede definirse como un flujo de vídeo compuesto de dos o más vistas. El vídeo multivista permite prestaciones avanzadas de vídeo, como el vídeo estereoscópico, el “free viewpoint video”, contacto visual mejorado mediante vistas virtuales, o entornos virtuales compartidos. El propósito de esta tesis es salvar un obstáculo considerable de cara al uso de vídeo multivista en sistemas de comunicación: la falta de soporte para esta tecnología por parte de los protocolos de señalización existentes, que hace imposible configurar una sesión con vídeo multivista mediante mecanismos estándar. Así pues, nuestro principal objetivo es la extensión del Protocolo de Inicio de Sesión (SIP) para soportar la negociación de sesiones multimedia con flujos de vídeo multivista. Nuestro trabajo se puede resumir en tres contribuciones principales. En primer lugar, hemos definido una extensión de señalización para configurar sesiones SIP con vídeo 3D. Esta extensión modifica el Protocolo de Descripción de Sesión (SDP) para introducir un nuevo atributo de nivel de medios, y un nuevo tipo de dependencia de descodificación, que contribuyen a describir los formatos de vídeo 3D que pueden emplearse en una sesión, así como la relación entre los flujos de vídeo que componen un flujo de vídeo 3D. La segunda contribución consiste en una extensión a SIP para manejar la señalización de videoconferencias con flujos de vídeo multivista. Se definen dos nuevos paquetes de eventos SIP para describir las capacidades y topología de los terminales de conferencia, por un lado, y la configuración espacial y mapeo de flujos de una conferencia, por el otro. También se describe un mecanismo para integrar el intercambio de esta información en el proceso de inicio de una conferencia SIP. Como tercera y última contribución, introducimos el concepto de espacio virtual de una conferencia, o un sistema de coordenadas que incluye todos los objetos relevantes de la conferencia (como dispositivos de captura, pantallas, y usuarios). Explicamos cómo el espacio virtual se relaciona con prestaciones de conferencia como el contacto visual, la escala de vídeo y la fidelidad espacial, y proporcionamos reglas para determinar las prestaciones de una conferencia a partir del análisis de su espacio virtual, y para generar espacios virtuales durante la configuración de conferencias.
Resumo:
INTRODUCTION: Objective assessment of motor skills has become an important challenge in minimally invasive surgery (MIS) training.Currently, there is no gold standard defining and determining the residents' surgical competence.To aid in the decision process, we analyze the validity of a supervised classifier to determine the degree of MIS competence based on assessment of psychomotor skills METHODOLOGY: The ANFIS is trained to classify performance in a box trainer peg transfer task performed by two groups (expert/non expert). There were 42 participants included in the study: the non-expert group consisted of 16 medical students and 8 residents (< 10 MIS procedures performed), whereas the expert group consisted of 14 residents (> 10 MIS procedures performed) and 4 experienced surgeons. Instrument movements were captured by means of the Endoscopic Video Analysis (EVA) tracking system. Nine motion analysis parameters (MAPs) were analyzed, including time, path length, depth, average speed, average acceleration, economy of area, economy of volume, idle time and motion smoothness. Data reduction was performed by means of principal component analysis, and then used to train the ANFIS net. Performance was measured by leave one out cross validation. RESULTS: The ANFIS presented an accuracy of 80.95%, where 13 experts and 21 non-experts were correctly classified. Total root mean square error was 0.88, while the area under the classifiers' ROC curve (AUC) was measured at 0.81. DISCUSSION: We have shown the usefulness of ANFIS for classification of MIS competence in a simple box trainer exercise. The main advantage of using ANFIS resides in its continuous output, which allows fine discrimination of surgical competence. There are, however, challenges that must be taken into account when considering use of ANFIS (e.g. training time, architecture modeling). Despite this, we have shown discriminative power of ANFIS for a low-difficulty box trainer task, regardless of the individual significances between MAPs. Future studies are required to confirm the findings, inclusion of new tasks, conditions and sample population.
Resumo:
Tool wear detection is a key issue for tool condition monitoring. The maximization of useful tool life is frequently related with the optimization of machining processes. This paper presents two model-based approaches for tool wear monitoring on the basis of neuro-fuzzy techniques. The use of a neuro-fuzzy hybridization to design a tool wear monitoring system is aiming at exploiting the synergy of neural networks and fuzzy logic, by combining human reasoning with learning and connectionist structure. The turning process that is a well-known machining process is selected for this case study. A four-input (i.e., time, cutting forces, vibrations and acoustic emissions signals) single-output (tool wear rate) model is designed and implemented on the basis of three neuro-fuzzy approaches (inductive, transductive and evolving neuro-fuzzy systems). The tool wear model is then used for monitoring the turning process. The comparative study demonstrates that the transductive neuro-fuzzy model provides better error-based performance indices for detecting tool wear than the inductive neuro-fuzzy model and than the evolving neuro-fuzzy model.
Resumo:
In this paper, an intelligent control approach based on neuro-fuzzy systems performance is presented, with the objective of counteracting the vibrations that affect the low-cost vision platform onboard an unmanned aerial system of rotating nature. A scaled dynamical model of a helicopter is used to simulate vibrations on its fuselage. The impact of these vibrations on the low-cost vision system will be assessed and an intelligent control approach will be derived in order to reduce its detrimental influence. Different trials that consider a neuro-fuzzy approach as a fundamental part of an intelligent semi-active control strategy have been carried out. Satisfactory results have been achieved compared to those obtained by means of vibration reduction passive techniques.
Resumo:
Gibberellins (GAs) are plant hormones that affect plant growth and regulate gene expression differentially across tissues. To study the molecular mechanisms underlying GA signaling in Arabidopsis thaliana, we focused on a GDSL lipase gene (LIP1) induced by GA and repressed by DELLA proteins. LIP1 contains an L1 box promoter sequence, conserved in the promoters of epidermis-specific genes, that is bound by ATML1, an HD-ZIP transcription factor required for epidermis specification. In this study, we demonstrate that LIP1 is specifically expressed in the epidermis and that its L1 box sequence mediates GA-induced transcription. We show that this sequence is overrepresented in the upstream regulatory regions of GA-induced and DELLA-repressed transcriptomes and that blocking GA signaling in the epidermis represses the expression of L1 box–containing genes and negatively affects seed germination. We show that DELLA proteins interact directly with ATML1 and its paralogue PDF2 and that silencing of both HD-ZIP transcription factors inhibits epidermal gene expression and delays germination. Our results indicate that, upon seed imbibition, increased GA levels reduce DELLA protein abundance and release ATML1/PDF2 to activate L1 box gene expression, thus enhancing germination potential.