2 resultados para Netting

em Universidad Politécnica de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evapotranspiration (ET c) of a table grape vineyard (Vitis vinifera, cv. Red Globe) trained to a gable trellis under netting and black plastic mulching was determined under semiarid conditions in the central Ebro River Valley during 2007 and 2008. The netting was made of high-density polyethylene (pores of 12 mm2) and was placed just above the ground canopy about 2.2 m above soil surface. Black plastic mulching was used to minimize soil evaporation. The surface renewal method was used to obtain values of sensible heat flux (H) from high-frequency temperature readings. Later, latent heat flux (LE) values were obtained by solving the energy balance equation. For the May–October period, seasonal ET c was about 843 mm in 2007 and 787 mm in 2008. The experimental weekly crop coefficients (K cexp) fluctuated between 0.64 and 1.2. These values represent crop coefficients adjusted to take into account the reduction in ET c caused by the netting and the black plastic mulching. Average K cexp values during mid- and end-season stages were 0.79 and 0.98, respectively. End-season K cexp was higher due to combination of factors related to the precipitation and low ET o conditions that are typical in this region during fall. Estimated crop coefficients using the Allen et al. (1998) approach adjusting for the effects of the netting and black plastic mulching (K cFAO) showed a good agreement with the experimental K cexp values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pest management practices that rely on pesticides are growing increasingly less effective and environmentally inappropriate in many cases and the search of alternatives is under focus nowadays. Exclusion of pests from the crop by means of pesticide-treated screens can be an eco-friendly method to protect crops, especially if pests are vectors of important diseases. The mesh size of nets is crucial to determine if insects can eventually cross the barrier or exclude them because there is a great variation in insect size depending on the species. Long-lasting insecticide-treated (LLITN) nets, factory pre-treated, have been used since years to fight against mosquitoes vector of malaria and are able to retain their biological efficacy under field for 3 years. In agriculture, treated nets with different insecticides have shown efficacy in controlling some insects and mites, so they seem to be a good tool in helping to solve some pest problems. However, treated nets must be carefully evaluated because can diminish air flow, increase temperature and humidity and decrease light transmission, which may affect plant growth, pests and natural enemies. As biological control is considered a key factor in IPM nowadays, the potential negative effects of treated nets on natural enemies need to be studied carefully. In this work, the effects of a bifentrhin-treated net (3 g/Kg) (supplied by the company Intelligent Insect Control, IIC) on natural enemies of aphids were tested on a cucumber crop in Central Spain in autumn 2011. The crop was sown in 8x6.5 m tunnels divided in 2 sealed compartments with control or treated nets, which were simple yellow netting with 25 mesh (10 x 10 threads/cm2; 1 x 1 mm hole size). Pieces of 2 m high of the treated-net were placed along the lateral sides of one of the two tunnel compartments in each of the 3 available tunnels (replicates); the rest was covered by a commercial untreated net of a similar mesh. The pest, Aphis gossypii Glover (Aphidae), the parasitoid Aphidius colemani (Haliday) (Braconidae) and the predator Adalia bipunctata L. (Coccinellidae) were artificially introduced in the crop. Weekly sampling was done determining the presence or absence of the pest and the natural enemies (NE) in the 42 plants/compartment as well as the number of insects in 11 marked plants. Environmental conditions (temperature, relative humidity, UV and PAR radiation) were recorded. Results show that when aphids were artificially released inside the tunnels, neither its number/plant nor their distribution was affected by the treated net. A lack of negative effect of the insecticide-treated net on natural enemies was also observed. Adalia bipunctata did not establish in the crop and only a short term control of aphids was observed one week after release. On the other hand, A. colemani did establish in the crop and a more long-term effect on the numbers of aphids/plant was detected irrespective of the type of net. KEY WORDS: bifenthrin-treated net, Adalia bipunctata, Aphidius colemani, Aphis gossypii, semi-field