2 resultados para Neotropical primate
em Universidad Politécnica de Madrid
Resumo:
The most ubiquitous neuron in the cerebral cortex, the pyramidal cell, is characterized by markedly different dendritic structure among different cortical areas. The complex pyramidal cell phenotype in granular prefrontal cortex (gPFC) of higher primates endows specific biophysical properties and patterns of connectivity, which differ from those in other cortical regions. However, within the gPFC, data have been sampled from only a select few cortical areas. The gPFC of species such as human and macaque monkey includes more than 10 cortical areas. It remains unknown as to what degree pyramidal cell structure may vary among these cortical areas. Here we undertook a survey of pyramidal cells in the dorsolateral, medial, and orbital gPFC of cercopithecid primates. We found marked heterogeneity in pyramidal cell structure within and between these regions. Moreover, trends for gradients in neuronal complexity varied among species. As the structure of neurons determines their computational abilities, memory storage capacity and connectivity, we propose that these specializations in the pyramidal cell phenotype are an important determinant of species-specific executive cortical functions in primates.
Resumo:
Species?habitat associations may contribute to the maintenance of species richness in tropical forests, but previous research has been conducted almost exclusively in lowland forests and has emphasized the importance of topography and edaphic conditions. Is the distribution of woody plant species in a Peruvian cloud forest determined by microhabitat conditions? What is the role of environmental characteristics and forest structure in habitat partitioning in a tropical cloud forest? We examined species?habitat associations in three 1-ha plots using the torus-translation method. We used three different criteria to define habitats for habitat partitioning analyses, based on microtopography, forest structure and both sets of factors. The number of species associated either positively or negatively with each habitat was assessed. Habitats defined on the basis of environmental conditions and forest structure discriminated a greater number of positive and negative associations at the scale of our analyses in a tropical cloud forest. Both topographic conditions and forest structure contribute to small-scale microhabitat partitioning of woody plant species in a Peruvian tropical cloud forest. Nevertheless, canopy species were most correlated with the distribution of environmental variables, while understorey species displayed associations with forest structure.