5 resultados para Nemi, Italy. Temple of Diana.
em Universidad Politécnica de Madrid
Resumo:
Engastando una piedra preciosa
Resumo:
En el presente proyecto se ha realizado un estudio sobre las condiciones acústicas de la iglesia Santa María del Castillo, ubicada en la localidad de Campo Real, al sureste de Madrid. Se trata de una iglesia construida entre los siglos XIV y XVII en diferentes fases, rica en características arquitectónicas correspondientes a varios estilos, tales como el gótico, el renacentista y el barroco. Reconocida en 1981 por sus valores arquitectónicos como Monumento Histórico–Artístico. A partir de unas completas mediciones del interior de la iglesia, se ha realizado un modelo tridimensional del mismo como base para la simulación mediante el software de simulación acústica EASE versión 4.3. Para conseguir que este modelo se asemeje a la realidad, se han realizado medidas del ruido de fondo en el interior de la iglesia en diferentes condiciones ambientales. Además se han creado mediante el software los coeficientes de absorción correspondientes a cada material presente en el interior de la iglesia y se han tenido en cuenta las características de los altavoces utilizados en la megafonía del recinto. El modelo en 3D obtenido caracteriza completamente las condiciones acústicas de la iglesia Santa María del Castillo, y nos sirve para valorar cómo es el sonido en el interior de la misma. Para ello obtenemos valores de diferentes parámetros acústico realizando simulaciones. Parámetros como el tiempo de reverberación y el nivel de presión sonora nos dan una idea general de cómo es el campo sonoro en el interior del recinto. Otros parámetros como el ALCons y el STI nos dan información sobre la inteligibilidad de la palabra en el recinto en el que se está realizando el estudio. Finalmente basándonos en los resultados obtenidos de la simulación se sacan conclusiones sobre las características acústicas de este recinto. La iglesia estudiada no es un recinto apropiado para la palabra y/o la música, además el predominio del campo reverberante sobre el campo directo es claro, esto es debido a las dimensiones del recinto y la poca absorción de los diferentes materiales empleados en su construcción, que son bastante reflexivos al sonido. ABSTRACT The present project undertakes the acoustic study of the church Santa María del Castillo. The church is the main temple of Campo Real, in the south-east of Madrid. It was built over different phases between the 14th and the 17th centuries and therefore, the presence of several architectural styles makes the church of Campo Real an interesting aim for this study. The building was recognised as Historic-Artistic Monument for its architectural value in 1981. Complete measurements from inside of the church were taken to build a computational 3D model which has been used to perform acoustic simulations of the church with the software EASE (Version 4.3). Noise measurements have been taken inside the church at different ambient conditions and they have been used to improve the reliability of the computational model. Furthermore, the model has been provided with software generated absorption coefficients and the characteristics of the actual loudspeakers have been taken into account. The 3D model created characterises all the acoustic conditions of the church Santa María del Castillo and allows the study of the sound properties inside the temple. Parameters such as reverberation time and sound pressure level were calculated performing simulations so the sound field inside the building can be described. Other parameters such as the Articulation Loss of Consonants (ALCons) and the Speech Transmission Index (STI) were studied to derive information about intelligibility inside the church. Finally, based on the results obtained by the simulation, I expose my conclusions about the acoustic characteristics of the building. The main conclusion derived from the present study is that the temple is not an appropriate place for voice or music listening due to the dimensions and the characteristics of the materials used in the construction since they are highly reflective to sound. The reverberant field predominates over the whole audience area in comparison with the direct field.
Resumo:
CO2 Emission from two old mine drillings (Mt. Amiata, Central Italy) as a possible example of storage and leakage of deep-seated CO2
Resumo:
Along the Apulian Adriatic coast, in a cliff south of Trani, a succession of three units (superimposed on one another) of marine and/or paralic environments has been recognised. The lowest unit I is characterised by calcareous/siliciclastic sands (css), micritic limestones (ml), stromatolitic and characean boundstones (scb), characean calcarenites (cc). The sedimentary environment merges from shallow marine, with low energy and temporary episodes of subaerial exposure, to lagoonal with a few exchanges with the sea. The lagoonal stromatolites (scb subunit) grew during a long period of relative stability of a high sea level in tropical climate. The unit I is truncated at the top by an erosion surface on which the unit II overlies; this consists of a basal pebble lag (bpl), silicicla - stic sands (ss), calcareous sands (cs), characean boundstones (cb), brown paleosol (bp). The sedimentary environment varies from beach to lagoon with salinity variations. Although there are indications of seismic events within the subunits cs, unit II deposition took place in a context of relative stability. The unit II is referable to a sea level highstand. Unit III, trangressive on the preceding, consists of white calcareous sands (wcs), calcareous sands and calcarenites (csc), phytoclastic calcirudite and phytohermal travertine (pcpt), mixed deposits (csl, m, k, c), sands (s) and red/brown paleosols (rbp). The sedimentation of this unit was affected by synsedimentary tectonic, attested by seismites found at several heights. Also the unit III is referable to a sea level highstand. The scientific literature has so far generally attributed to the Tyrrhenian (auct.) the deposits of Trani cliff. As part of this work some datings were performed on 10 samples, using the amino acid racemization method (AAR) applied to ostracod carapaces. Four of these samples have been rejected because they have shown in laboratory recent contamination. The numerical ages indicate that the deposits of the Trani cliff are older than MIS 5. The upper part of the unit I has been dated to 355±85 ka BP, thus allowing to assign the lowest stromatolitic subunit (scb) at the MIS 11 peak and the top of the unit I at the MIS 11-MIS 10 interval. The base of the unit II has been dated to 333±118 ka BP, thus attributing the erosion surface that bounds the units I and II to the MIS 10 lowstand and the lower part of the unit II to MIS 9.3. The upper part of the unit II has been dated to 234±35 ka BP, while three other numerical ages come from unit III: 303±35, 267±51, 247±61 ka BP. At present, the numerical ages cannot distinguish the sedimentation ages of units II and III, which are both related to the MIS 9.3- MIS 7.1 time range. However, the position of the units, superimposed one another, and their respective age, allows us to recognise a subsidence phase between MIS 11 and MIS 7, followed by an uplift phase between the MIS 7 and the present day, which led the deposits in their current position. This tectonic pattern is not in full agreement with what is described in the literature for the Apulian foreland.
Resumo:
The Mt. Amiata volcano (Tuscany, central Italy) hosts the second largest geothermal field of Italy. Its SW and NE sectors are characterized by the presence of several CO2-rich (mayor que95% by vol.) gas discharges. An intense Hg mining activity had taken place from the 19th century up to the end of the ?70s, particularly close to Abbadia San Salvatore, during which two drillings (Acqua Passante and Ermeta) intercepted a CO2-rich gas fertile horizon. The related gases are emitted in the atmosphere since 1938 and 1959, respectively, causing severe concerns for the local air quality. In this work the results of a geochemical and isotopic survey carried out on these gas emissions from March 2009 to January 2014 are presented. CO2 fluxes from both the two wells and soil from an area of about 653,500 m2 located between them were measured. The two wells are emitting up to 15,000, 92 and 8 tons y-1 of CO2, CH4 and H2S, respectively, while the computed soil CO2 output was estimated at 4,311 ton y-1. The spatial distribution of the CO2 soil flux suggests the presence of preferential patterns, indicating sites of higher permeability. Since the local municipality is evaluating the possibility to plug the Ermeta vent, a temporarily closure should first be carried out to test the possible influence of this operation on the diffuse soil degassing of deep-originated CO2 in the surrounding area. This implies that diffuse soil gases should carefully be monitored before proceeding with its definitive closure.