3 resultados para Negros 

em Universidad Politécnica de Madrid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Project you are about to see it is based on the technologies used on object detection and recognition, especially on leaves and chromosomes. To do so, this document contains the typical parts of a scientific paper, as it is what it is. It is composed by an Abstract, an Introduction, points that have to do with the investigation area, future work, conclusions and references used for the elaboration of the document. The Abstract talks about what are we going to find in this paper, which is technologies employed on pattern detection and recognition for leaves and chromosomes and the jobs that are already made for cataloguing these objects. In the introduction detection and recognition meanings are explained. This is necessary as many papers get confused with these terms, specially the ones talking about chromosomes. Detecting an object is gathering the parts of the image that are useful and eliminating the useless parts. Summarizing, detection would be recognizing the objects borders. When talking about recognition, we are talking about the computers or the machines process, which says what kind of object we are handling. Afterwards we face a compilation of the most used technologies in object detection in general. There are two main groups on this category: Based on derivatives of images and based on ASIFT points. The ones that are based on derivatives of images have in common that convolving them with a previously created matrix does the treatment of them. This is done for detecting borders on the images, which are changes on the intensity of the pixels. Within these technologies we face two groups: Gradian based, which search for maximums and minimums on the pixels intensity as they only use the first derivative. The Laplacian based methods search for zeros on the pixels intensity as they use the second derivative. Depending on the level of details that we want to use on the final result, we will choose one option or the other, because, as its logic, if we used Gradian based methods, the computer will consume less resources and less time as there are less operations, but the quality will be worse. On the other hand, if we use the Laplacian based methods we will need more time and resources as they require more operations, but we will have a much better quality result. After explaining all the derivative based methods, we take a look on the different algorithms that are available for both groups. The other big group of technologies for object recognition is the one based on ASIFT points, which are based on 6 image parameters and compare them with another image taking under consideration these parameters. These methods disadvantage, for our future purposes, is that it is only valid for one single object. So if we are going to recognize two different leaves, even though if they refer to the same specie, we are not going to be able to recognize them with this method. It is important to mention these types of technologies as we are talking about recognition methods in general. At the end of the chapter we can see a comparison with pros and cons of all technologies that are employed. Firstly comparing them separately and then comparing them all together, based on our purposes. Recognition techniques, which are the next chapter, are not really vast as, even though there are general steps for doing object recognition, every single object that has to be recognized has its own method as the are different. This is why there is not a general method that we can specify on this chapter. We now move on into leaf detection techniques on computers. Now we will use the technique explained above based on the image derivatives. Next step will be to turn the leaf into several parameters. Depending on the document that you are referring to, there will be more or less parameters. Some papers recommend to divide the leaf into 3 main features (shape, dent and vein] and doing mathematical operations with them we can get up to 16 secondary features. Next proposition is dividing the leaf into 5 main features (Diameter, physiological length, physiological width, area and perimeter] and from those, extract 12 secondary features. This second alternative is the most used so it is the one that is going to be the reference. Following in to leaf recognition, we are based on a paper that provides a source code that, clicking on both leaf ends, it automatically tells to which specie belongs the leaf that we are trying to recognize. To do so, it only requires having a database. On the tests that have been made by the document, they assure us a 90.312% of accuracy over 320 total tests (32 plants on the database and 10 tests per specie]. Next chapter talks about chromosome detection, where we shall pass the metaphasis plate, where the chromosomes are disorganized, into the karyotype plate, which is the usual view of the 23 chromosomes ordered by number. There are two types of techniques to do this step: the skeletonization process and swiping angles. Skeletonization progress consists on suppressing the inside pixels of the chromosome to just stay with the silhouette. This method is really similar to the ones based on the derivatives of the image but the difference is that it doesnt detect the borders but the interior of the chromosome. Second technique consists of swiping angles from the beginning of the chromosome and, taking under consideration, that on a single chromosome we cannot have more than an X angle, it detects the various regions of the chromosomes. Once the karyotype plate is defined, we continue with chromosome recognition. To do so, there is a technique based on the banding that chromosomes have (grey scale bands] that make them unique. The program then detects the longitudinal axis of the chromosome and reconstructs the band profiles. Then the computer is able to recognize this chromosome. Concerning the future work, we generally have to independent techniques that dont reunite detection and recognition, so our main focus would be to prepare a program that gathers both techniques. On the leaf matter we have seen that, detection and recognition, have a link as both share the option of dividing the leaf into 5 main features. The work that would have to be done is to create an algorithm that linked both methods, as in the program, which recognizes leaves, it has to be clicked both leaf ends so it is not an automatic algorithm. On the chromosome side, we should create an algorithm that searches for the beginning of the chromosome and then start to swipe angles, to later give the parameters to the program that searches for the band profiles. Finally, on the summary, we explain why this type of investigation is needed, and that is because with global warming, lots of species (animals and plants] are beginning to extinguish. That is the reason why a big database, which gathers all the possible species, is needed. For recognizing animal species, we just only have to have the 23 chromosomes. While recognizing a plant, there are several ways of doing it, but the easiest way to input a computer is to scan the leaf of the plant. RESUMEN. El proyecto que se puede ver a continuación trata sobre las tecnologías empleadas en la detección y reconocimiento de objetos, especialmente de hojas y cromosomas. Para ello, este documento contiene las partes típicas de un paper de investigación, puesto que es de lo que se trata. Así, estará compuesto de Abstract, Introducción, diversos puntos que tengan que ver con el área a investigar, trabajo futuro, conclusiones y biografía utilizada para la realización del documento. Así, el Abstract nos cuenta qué vamos a poder encontrar en este paper, que no es ni más ni menos que las tecnologías empleadas en el reconocimiento y detección de patrones en hojas y cromosomas y qué trabajos hay existentes para catalogar a estos objetos. En la introducción se explican los conceptos de qué es la detección y qué es el reconocimiento. Esto es necesario ya que muchos papers científicos, especialmente los que hablan de cromosomas, confunden estos dos términos que no podían ser más sencillos. Por un lado tendríamos la detección del objeto, que sería simplemente coger las partes que nos interesasen de la imagen y eliminar aquellas partes que no nos fueran útiles para un futuro. Resumiendo, sería reconocer los bordes del objeto de estudio. Cuando hablamos de reconocimiento, estamos refiriéndonos al proceso que tiene el ordenador, o la máquina, para decir qué clase de objeto estamos tratando. Seguidamente nos encontramos con un recopilatorio de las tecnologías más utilizadas para la detección de objetos, en general. Aquí nos encontraríamos con dos grandes grupos de tecnologías: Las basadas en las derivadas de imágenes y las basadas en los puntos ASIFT. El grupo de tecnologías basadas en derivadas de imágenes tienen en común que hay que tratar a las imágenes mediante una convolución con una matriz creada previamente. Esto se hace para detectar bordes en las imágenes que son básicamente cambios en la intensidad de los píxeles. Dentro de estas tecnologías nos encontramos con dos grupos: Los basados en gradientes, los cuales buscan máximos y mínimos de intensidad en la imagen puesto que sólo utilizan la primera derivada; y los Laplacianos, los cuales buscan ceros en la intensidad de los píxeles puesto que estos utilizan la segunda derivada de la imagen. Dependiendo del nivel de detalles que queramos utilizar en el resultado final nos decantaremos por un método u otro puesto que, como es lógico, si utilizamos los basados en el gradiente habrá menos operaciones por lo que consumirá más tiempo y recursos pero por la contra tendremos menos calidad de imagen. Y al revés pasa con los Laplacianos, puesto que necesitan más operaciones y recursos pero tendrán un resultado final con mejor calidad. Después de explicar los tipos de operadores que hay, se hace un recorrido explicando los distintos tipos de algoritmos que hay en cada uno de los grupos. El otro gran grupo de tecnologías para el reconocimiento de objetos son los basados en puntos ASIFT, los cuales se basan en 6 parámetros de la imagen y la comparan con otra imagen teniendo en cuenta dichos parámetros. La desventaja de este método, para nuestros propósitos futuros, es que sólo es valido para un objeto en concreto. Por lo que si vamos a reconocer dos hojas diferentes, aunque sean de la misma especie, no vamos a poder reconocerlas mediante este método. Aún así es importante explicar este tipo de tecnologías puesto que estamos hablando de técnicas de reconocimiento en general. Al final del capítulo podremos ver una comparación con los pros y las contras de todas las tecnologías empleadas. Primeramente comparándolas de forma separada y, finalmente, compararemos todos los métodos existentes en base a nuestros propósitos. Las técnicas de reconocimiento, el siguiente apartado, no es muy extenso puesto que, aunque haya pasos generales para el reconocimiento de objetos, cada objeto a reconocer es distinto por lo que no hay un método específico que se pueda generalizar. Pasamos ahora a las técnicas de detección de hojas mediante ordenador. Aquí usaremos la técnica explicada previamente explicada basada en las derivadas de las imágenes. La continuación de este paso sería diseccionar la hoja en diversos parámetros. Dependiendo de la fuente a la que se consulte pueden haber más o menos parámetros. Unos documentos aconsejan dividir la morfología de la hoja en 3 parámetros principales (Forma, Dentina y ramificación] y derivando de dichos parámetros convertirlos a 16 parámetros secundarios. La otra propuesta es dividir la morfología de la hoja en 5 parámetros principales (Diámetro, longitud fisiológica, anchura fisiológica, área y perímetro] y de ahí extraer 12 parámetros secundarios. Esta segunda propuesta es la más utilizada de todas por lo que es la que se utilizará. Pasamos al reconocimiento de hojas, en la cual nos hemos basado en un documento que provee un código fuente que cucando en los dos extremos de la hoja automáticamente nos dice a qué especie pertenece la hoja que estamos intentando reconocer. Para ello sólo hay que formar una base de datos. En los test realizados por el citado documento, nos aseguran que tiene un índice de acierto del 90.312% en 320 test en total (32 plantas insertadas en la base de datos por 10 test que se han realizado por cada una de las especies]. El siguiente apartado trata de la detección de cromosomas, en el cual se debe de pasar de la célula metafásica, donde los cromosomas están desorganizados, al cariotipo, que es como solemos ver los 23 cromosomas de forma ordenada. Hay dos tipos de técnicas para realizar este paso: Por el proceso de esquelotonización y barriendo ángulos. El proceso de esqueletonización consiste en eliminar los píxeles del interior del cromosoma para quedarse con su silueta; Este proceso es similar a los métodos de derivación de los píxeles pero se diferencia en que no detecta bordes si no que detecta el interior de los cromosomas. La segunda técnica consiste en ir barriendo ángulos desde el principio del cromosoma y teniendo en cuenta que un cromosoma no puede doblarse más de X grados detecta las diversas regiones de los cromosomas. Una vez tengamos el cariotipo, se continua con el reconocimiento de cromosomas. Para ello existe una técnica basada en las bandas de blancos y negros que tienen los cromosomas y que son las que los hacen únicos. Para ello el programa detecta los ejes longitudinales del cromosoma y reconstruye los perfiles de las bandas que posee el cromosoma y que lo identifican como único. En cuanto al trabajo que se podría desempeñar en el futuro, tenemos por lo general dos técnicas independientes que no unen la detección con el reconocimiento por lo que se habría de preparar un programa que uniese estas dos técnicas. Respecto a las hojas hemos visto que ambos métodos, detección y reconocimiento, están vinculados debido a que ambos comparten la opinión de dividir las hojas en 5 parámetros principales. El trabajo que habría que realizar sería el de crear un algoritmo que conectase a ambos ya que en el programa de reconocimiento se debe clicar a los dos extremos de la hoja por lo que no es una tarea automática. En cuanto a los cromosomas, se debería de crear un algoritmo que busque el inicio del cromosoma y entonces empiece a barrer ángulos para después poder dárselo al programa que busca los perfiles de bandas de los cromosomas. Finalmente, en el resumen se explica el por qué hace falta este tipo de investigación, esto es que con el calentamiento global, muchas de las especies (tanto animales como plantas] se están empezando a extinguir. Es por ello que se necesitará una base de datos que contemple todas las posibles especies tanto del reino animal como del reino vegetal. Para reconocer a una especie animal, simplemente bastará con tener sus 23 cromosomas; mientras que para reconocer a una especie vegetal, existen diversas formas. Aunque la más sencilla de todas es contar con la hoja de la especie puesto que es el elemento más fácil de escanear e introducir en el ordenador.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Es imposible entender, definir o actuar en el litoral sin tener en cuenta las relaciones entre los procesos físicos del sistema, la complejidad jurídica y competencial que determina el tipo y ámbito de actuación, y la utilización de la costa como recurso económico, productivo y cultural. Como parte del sistema administrativo y legal, la ordenación del territorio y el planeamiento municipal han tenido un papel fundamental en la actual configuración del litoral de Cartagena, en el que se sitúan dos de los puntos negros del Mediterráneo español, Bahía de Portmán y Manga del Mar Menor, pero en el que siguen existiendo importantes tramos sin desarrollo. Con objeto de poner de manifiesto los principales aciertos y errores en su gestión, se analizará la influencia que el marco legal y los documentos de ordenación han tenido en los distintos modelos de litoral, con especial atención a la gestión desarrollada por los diferentes escalones administrativos y su evolución a lo largo del tiempo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El planteamiento tradicional de análisis de la accidentalidad en carretera pasa por la consideración de herramientas paliativas, como son la identificación y gestión de los puntos negros o tramos de concentración de accidentes, o preventivas, como las auditorías e inspecciones de seguridad vial. En esta tesis doctoral se presenta un planteamiento complementario a estas herramientas, desde una perspectiva novedosa: la consideración de los tramos donde no se producen accidentes; son los denominados Tramos Blancos. La tesis persigue demostrar que existen determinados parámetros del diseño de las carreteras y del tráfico que, bajo características generales similares de las vías, tienen influencia en el hecho de que se produzcan o no accidentes, adicionalmente a la exposición al riesgo, como factor principal, y a otros factores. La propia definición de los Tramos Blancos, entendidos como tramos de carreteras de longitud representativa donde no se han producido accidentes con víctimas mortales o heridos graves durante un periodo largo de tiempo, garantiza que esta situación no se produzca como consecuencia de la aleatoriedad de los accidentes, sino que pudiera deberse a una confluencia específica de determinados parámetros de la geometría de la vía y del tráfico total y de vehículos pesados. Para el desarrollo de esta investigación se han considerado la red de autopistas de peaje y las carreteras convencionales de la Red del Estado de España, que supone un total de 17.000 kilómetros, y los datos de accidentes con víctimas mortales y heridos graves en el periodo 2006-2010, ambos incluidos, en estas redes (un total de 10.000 accidentes). La red viaria objeto de análisis supone el 65% de la longitud de la Red de Carreteras del Estado, por la que circula el 33% de su tráfico; en ella se produjeron en el año 2013 el 47% de los accidentes con víctimas y el 60% de las víctimas mortales de la Red de Carreteras del Estado. Durante la investigación se ha desarrollado una base de datos de 250.130 registros y más de 3.5 millones de datos en el caso de las autopistas de peaje de la Red de Carreteras del Estado y de 935.402 registros y más de 14 millones de datos en el caso de la red convencional del Estado analizada. Tanto las autopistas de peaje como las carreteras convencionales han sido clasificadas según sus características de tráfico, de manera que se valoren vías con nivel de exposición al riesgo similar. Para cada tipología de vía, se ha definido como longitud de referencia para que un tramo se considere Tramo Blanco la longitud igual al percentil 95 de las longitudes de tramos sin accidentes con heridos graves o víctimas mortales durante el periodo 2006-2010. En el caso de las autopistas de peaje, en la tipología que ha sido considerada para la definición del modelo, esta longitud de referencia se estableció en 14.5 kilómetros, mientras que en el caso de las carreteras convencionales, se estableció en 7.75 kilómetros. Para cada uno de los tipos de vía considerados se han construido una base de datos en la que se han incluido las variables de existencia o no de Tramo Blanco, así como las variables de tráfico (intensidad media diaria total, intensidad de vehículos pesados y porcentaje de vehículos pesados ), la velocidad media y las variables de geometría (número de carriles, ancho de carril, ancho de arcén derecho e izquierdo, ancho de calzada y plataforma, radio, peralte, pendiente y visibilidad directa e inversa en los casos disponibles); como variables adicionales, se han incluido el número de accidentes con víctimas, los fallecidos y heridos graves, índices de peligrosidad, índices de mortalidad y exposición al riesgo. Los trabajos desarrollados para explicar la presencia de Tramos Blancos en la red de autopistas de peaje han permitido establecer las diferencias entre los valores medios de las variables de tráfico y diseño geométrico en Tramos Blancos respecto a tramos no blancos y comprobar que estas diferencias son significativas. Así mismo, se ha podido calibrar un modelo de regresión logística que explica parcialmente la existencia de Tramos Blancos, para rangos de tráfico inferiores a 10.000 vehículos diarios y para tráficos entre 10.000 y 15.000 vehículos diarios. Para el primer grupo (menos de 10.000 vehículos al día), las variables que han demostrado tener una mayor influencia en la existencia de Tramo Blanco son la velocidad media de circulación, el ancho de carril, el ancho de arcén izquierdo y el porcentaje de vehículos pesados. Para el segundo grupo (entre 10.000 y 15.000 vehículos al día), las variables independientes más influyentes en la existencia de Tramo Blanco han sido la velocidad de circulación, el ancho de calzada y el porcentaje de vehículos pesados. En el caso de las carreteras convencionales, los diferentes análisis realizados no han permitido identificar un modelo que consiga una buena clasificación de los Tramos Blancos. Aun así, se puede afirmar que los valores medios de las variables de intensidad de tráfico, radio, visibilidad, peralte y pendiente presentan diferencias significativas en los Tramos Blancos respecto a los no blancos, que varían en función de la intensidad de tráfico. Los resultados obtenidos deben considerarse como la conclusión de un análisis preliminar, dado que existen otros parámetros, tanto de diseño de la vía como de la circulación, el entorno, el factor humano o el vehículo que podrían tener una influencia en el hecho que se analiza, y no se han considerado por no disponer de esta información. En esta misma línea, el análisis de las circunstancias que rodean al viaje que el usuario de la vía realiza, su tipología y motivación es una fuente de información de interés de la que no se tienen datos y que permitiría mejorar el análisis de accidentalidad en general, y en particular el de esta investigación. Adicionalmente, se reconocen limitaciones en el desarrollo de esta investigación, en las que sería preciso profundizar en el futuro, reconociendo así nuevas líneas de investigación de interés. The traditional approach to road accidents analysis has been based in the use of palliative tools, such as black spot (or road sections) identification and management, or preventive tools, such as road safety audits and inspections. This thesis shows a complementary approach to the existing tools, from a new perspective: the consideration of road sections where no accidents have occurred; these are the so-called White Road Sections. The aim of this thesis is to show that there are certain design parameters and traffic characteristics which, under similar circumstances for roads, have influence in the fact that accidents occur, in addition to the main factor, which is the risk exposure, and others. White Road Sections, defined as road sections of a representative length, where no fatal accidents or accidents involving serious injured have happened during a long period of time, should not be a product of randomness of accidents; on the contrary, they might be the consequence of a confluence of specific parameters of road geometry, traffic volumes and heavy vehicles traffic volumes. For this research, the toll motorway network and single-carriageway network of the Spanish National Road Network have been considered, which is a total of 17.000 kilometers; fatal accidents and those involving serious injured from the period 2006-2010 have been considered (a total number of 10.000 accidents). The road network covered means 65% of the total length of the National Road Network, which allocates 33% of traffic volume; 47% of accidents with victims and 60% of fatalities happened in these road networks during 2013. During the research, a database of 250.130 registers and more than 3.5 million data for toll motorways and 935.042 registers and more than 14 million data for single carriageways of the National Road Network was developed. Both toll motorways and single-carriageways have been classified according to their traffic characteristics, so that the analysis is performed over roads with similar risk exposure. For each road type, a reference length for White Road Section has been defined, as the 95 percentile of all road sections lengths without accidents (with fatalities or serious injured) for 2006-2010. For toll motorways, this reference length concluded to be 14.5 kilometers, while for single-carriageways, it was defined as 7.75 kilometers. A detailed database was developed for each type of road, including the variable “existence of White Road Section”, as well as variables of traffic (average daily traffic volume, heavy vehicles average daily traffic and percentage of heavy vehicles from the total traffic volume), average speed and geometry variables (number of lanes, width of lane, width of shoulders, carriageway width, platform width, radius, superelevation, slope and visibility); additional variables, such as number of accidents with victims, number of fatalities or serious injured, risk and fatality rates and risk exposure, have also been included. Research conducted for the explanation of the presence of White Road Sections in the toll motorway network have shown statistically significant differences in the average values of variables of traffic and geometric design in White Road Sections compared with other road sections. In addition, a binary logistic model for the partial explanation of the presence of White Road Sections was developed, for traffic volumes lower than 10.000 daily vehicles and for those running from 10.000 to 15.000 daily vehicles. For the first group, the most influent variables for the presence of White Road Sections were the average speed, width of lane, width of left shoulder and percentage of heavy vehicles. For the second group, the most influent variables were found to be average speed, carriageway width and percentage of heavy vehicles. For single-carriageways, the different analysis developed did not reach a proper model for the explanation of White Road Sections. However, it can be assumed that the average values of the variables of traffic volume, radius, visibility, superelevation and slope show significant differences in White Road Sections if compared with others, which also vary with traffic volumes. Results obtained should be considered as a conclusion of a preliminary analysis, as there are other parameters, not only design-related, but also regarding traffic, environment, human factor and vehicle which could have an influence in the fact under research, but this information has not been considered in the analysis, as it was not available. In parallel, the analysis of the circumstances around the trip, including its typology and motivation is an interesting source of information, from which data are not available; the availability of this information would be useful for the improvement of accident analysis, in general, and for this research work, in particular. In addition, there are some limitations in the development of the research work; it would be necessary to develop an in-depth analysis in the future, thus assuming new research lines of interest.