41 resultados para Natural Language Queries, NLPX, Bricks, XML-IR, Users

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Providing descriptions of isolated sensors and sensor networks in natural language, understandable by the general public, is useful to help users find relevant sensors and analyze sensor data. In this paper, we discuss the feasibility of using geographic knowledge from public databases available on the Web (such as OpenStreetMap, Geonames, or DBpedia) to automatically construct such descriptions. We present a general method that uses such information to generate sensor descriptions in natural language. The results of the evaluation of our method in a hydrologic national sensor network showed that this approach is feasible and capable of generating adequate sensor descriptions with a lower development effort compared to other approaches. In the paper we also analyze certain problems that we found in public databases (e.g., heterogeneity, non-standard use of labels, or rigid search methods) and their impact in the generation of sensor descriptions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important part of human intelligence is the ability to use language. Humans learn how to use language in a society of language users, which is probably the most effective way to learn a language from the ground up. Principles that might allow an artificial agents to learn language this way are not known at present. Here we present a framework which begins to address this challenge. Our auto-catalytic, endogenous, reflective architecture (AERA) supports the creation of agents that can learn natural language by observation. We present results from two experiments where our S1 agent learns human communication by observing two humans interacting in a realtime mock television interview, using gesture and situated language. Results show that S1 can learn multimodal complex language and multimodal communicative acts, using a vocabulary of 100 words with numerous sentence formats, by observing unscripted interaction between the humans, with no grammar being provided to it a priori, and only high-level information about the format of the human interaction in the form of high-level goals of the interviewer and interviewee and a small ontology. The agent learns both the pragmatics, semantics, and syntax of complex sentences spoken by the human subjects on the topic of recycling of objects such as aluminum cans, glass bottles, plastic, and wood, as well as use of manual deictic reference and anaphora.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El presente trabajo desarrolla un servicio REST que transforma frases en lenguaje natural a grafos RDF. Los grafos generados son grafos dirigidos, donde los nodos se forman con los sustantivos o adjetivos de las frases, y los arcos se forman con los verbos. Se utiliza dentro del proyecto p-medicine para dar soporte a las siguientes funcionalidades: Búsquedas en lenguaje natural: actualmente la plataforma p-medicine proporciona un interfaz programático para realizar consultas en SPARQL. El servicio desarrollado permitiría generar esas consultas automáticamente a partir de frases en lenguaje natural. Anotaciones de bases de datos mediante lenguaje natural: la plataforma pmedicine incorpora una herramienta, desarrollada por el Grupo de Ingeniería Biomédica de la Universidad Politécnica de Madrid, para la anotación de bases de datos RDF. Estas anotaciones son necesarias para la posterior traducción de las bases de datos a un esquema central. El proceso de anotación requiere que el usuario construya de forma manual las vistas RDF que desea anotar, lo que requiere mostrar gráficamente el esquema RDF y que el usuario construya vistas RDF seleccionando las clases y relaciones necesarias. Este proceso es a menudo complejo y demasiado difícil para un usuario sin perfil técnico. El sistema se incorporará para permitir que la construcción de estas vistas se realice con lenguaje natural. ---ABSTRACT---The present work develops a REST service that transforms natural language sentences to RDF degrees. Generated graphs are directed graphs where nodes are formed with nouns or adjectives of phrases, and the arcs are formed with verbs. Used within the p-medicine project to support the following functionality: Natural language queries: currently the p-medicine platform provides a programmatic interface to query SPARQL. The developed service would automatically generate those queries from natural language sentences. Memos databases using natural language: the p-medicine platform incorporates a tool, developed by the Group of Biomedical Engineering at the Polytechnic University of Madrid, for the annotation of RDF data bases. Such annotations are necessary for the subsequent translation of databases to a central scheme. The annotation process requires the user to manually construct the RDF views that he wants annotate, requiring graphically display the RDF schema and the user to build RDF views by selecting classes and relationships. This process is often complex and too difficult for a user with no technical background. The system is incorporated to allow the construction of these views to be performed with natural language.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La Gestión de Recursos Humanos a través de Internet es un problema latente y presente actualmente en cualquier sitio web dedicado a la búsqueda de empleo. Este problema también está presente en AFRICA BUILD Portal. AFRICA BUILD Portal es una emergente red socio-profesional nacida con el ánimo de crear comunidades virtuales que fomenten la educación e investigación en el área de la salud en países africanos. Uno de los métodos para fomentar la educación e investigación es mediante la movilidad de estudiantes e investigadores entre instituciones, apareciendo así, el citado problema de la gestión de recursos humanos. Por tanto, este trabajo se centra en solventar el problema de la gestión de recursos humanos en el entorno específico de AFRICA BUILD Portal. Para solventar este problema, el objetivo es desarrollar un sistema de recomendación que ayude en la gestión de recursos humanos en lo que concierne a la selección de las mejores ofertas y demandas de movilidad. Caracterizando al sistema de recomendación como un sistema semántico el cual ofrecerá las recomendaciones basándose en las reglas y restricciones impuestas por el dominio. La aproximación propuesta se basa en seguir el enfoque de los sistemas de Matchmaking semánticos. Siguiendo este enfoque, por un lado, se ha empleado un razonador de lógica descriptiva que ofrece inferencias útiles en el cálculo de las recomendaciones y por otro lado, herramientas de procesamiento de lenguaje natural para dar soporte al proceso de recomendación. Finalmente para la integración del sistema de recomendación con AFRICA BUILD Portal se han empleado diversas tecnologías web. Los resultados del sistema basados en la comparación de recomendaciones creadas por el sistema y por usuarios reales han mostrado un funcionamiento y rendimiento aceptable. Empleando medidas de evaluación de sistemas de recuperación de información se ha obtenido una precisión media del sistema de un 52%, cifra satisfactoria tratándose de un sistema semántico. Pudiendo concluir que con la solución implementada se ha construido un sistema estable y modular posibilitando: por un lado, una fácil evolución que debería ir encaminada a lograr un rendimiento mayor, incrementando su precisión y por otro lado, dejando abiertas nuevas vías de crecimiento orientadas a la explotación del potencial de AFRICA BUILD Portal mediante la Web 3.0. ---ABSTRACT---The Human Resource Management through Internet is currently a latent problem shown in any employment website. This problem has also appeared in AFRICA BUILD Portal. AFRICA BUILD Portal is an emerging socio-professional network with the objective of creating virtual communities to foster the capacity for health research and education in African countries. One way to foster this capacity of research and education is through the mobility of students and researches between institutions, thus appearing the Human Resource Management problem. Therefore, this dissertation focuses on solving the Human Resource Management problem in the specific environment of AFRICA BUILD Portal. To solve this problem, the objective is to develop a recommender system which assists the management of Human Resources with respect to the selection of the best mobility supplies and demands. The recommender system is a semantic system which will provide the recommendations according to the domain rules and restrictions. The proposed approach is based on semantic matchmaking solutions. So, this approach on the one hand uses a Description Logics reasoning engine which provides useful inferences to the recommendation process and on the other hand uses Natural Language Processing techniques to support the recommendation process. Finally, Web technologies are used in order to integrate the recommendation system into AFRICA BUILD Portal. The results of evaluating the system are based on the comparison between recommendations created by the system and by real users. These results have shown an acceptable behavior and performance. The average precision of the system has been obtained by evaluation measures for information retrieval systems, so the average precision of the system is at 52% which may be considered as a satisfactory result taking into account that the system is a semantic system. To conclude, it could be stated that the implemented system is stable and modular. This fact on the one hand allows an easy evolution that should aim to achieve a higher performance by increasing its average precision and on the other hand keeps open new ways to increase the functionality of the system oriented to exploit the potential of AFRICA BUILD Portal through Web 3.0.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents a multi-agent expert system (SMAF) , that allows the input of incidents which occur in different elements of the telecommunications area. SMAF interacts with experts and general users, and each agent with all the agents? community, recording the incidents and their solutions in a knowledge base, without the analysis of their causes. The incidents are expressed using keywords taken from natural language (originally Spanish) and their main concepts are recorded with their severities as the users express them. Then, there is a search of the best solution for each incident, being helped by a human operator using a distancenotions between them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OntoTag - A Linguistic and Ontological Annotation Model Suitable for the Semantic Web 1. INTRODUCTION. LINGUISTIC TOOLS AND ANNOTATIONS: THEIR LIGHTS AND SHADOWS Computational Linguistics is already a consolidated research area. It builds upon the results of other two major ones, namely Linguistics and Computer Science and Engineering, and it aims at developing computational models of human language (or natural language, as it is termed in this area). Possibly, its most well-known applications are the different tools developed so far for processing human language, such as machine translation systems and speech recognizers or dictation programs. These tools for processing human language are commonly referred to as linguistic tools. Apart from the examples mentioned above, there are also other types of linguistic tools that perhaps are not so well-known, but on which most of the other applications of Computational Linguistics are built. These other types of linguistic tools comprise POS taggers, natural language parsers and semantic taggers, amongst others. All of them can be termed linguistic annotation tools. Linguistic annotation tools are important assets. In fact, POS and semantic taggers (and, to a lesser extent, also natural language parsers) have become critical resources for the computer applications that process natural language. Hence, any computer application that has to analyse a text automatically and ‘intelligently’ will include at least a module for POS tagging. The more an application needs to ‘understand’ the meaning of the text it processes, the more linguistic tools and/or modules it will incorporate and integrate. However, linguistic annotation tools have still some limitations, which can be summarised as follows: 1. Normally, they perform annotations only at a certain linguistic level (that is, Morphology, Syntax, Semantics, etc.). 2. They usually introduce a certain rate of errors and ambiguities when tagging. This error rate ranges from 10 percent up to 50 percent of the units annotated for unrestricted, general texts. 3. Their annotations are most frequently formulated in terms of an annotation schema designed and implemented ad hoc. A priori, it seems that the interoperation and the integration of several linguistic tools into an appropriate software architecture could most likely solve the limitations stated in (1). Besides, integrating several linguistic annotation tools and making them interoperate could also minimise the limitation stated in (2). Nevertheless, in the latter case, all these tools should produce annotations for a common level, which would have to be combined in order to correct their corresponding errors and inaccuracies. Yet, the limitation stated in (3) prevents both types of integration and interoperation from being easily achieved. In addition, most high-level annotation tools rely on other lower-level annotation tools and their outputs to generate their own ones. For example, sense-tagging tools (operating at the semantic level) often use POS taggers (operating at a lower level, i.e., the morphosyntactic) to identify the grammatical category of the word or lexical unit they are annotating. Accordingly, if a faulty or inaccurate low-level annotation tool is to be used by other higher-level one in its process, the errors and inaccuracies of the former should be minimised in advance. Otherwise, these errors and inaccuracies would be transferred to (and even magnified in) the annotations of the high-level annotation tool. Therefore, it would be quite useful to find a way to (i) correct or, at least, reduce the errors and the inaccuracies of lower-level linguistic tools; (ii) unify the annotation schemas of different linguistic annotation tools or, more generally speaking, make these tools (as well as their annotations) interoperate. Clearly, solving (i) and (ii) should ease the automatic annotation of web pages by means of linguistic tools, and their transformation into Semantic Web pages (Berners-Lee, Hendler and Lassila, 2001). Yet, as stated above, (ii) is a type of interoperability problem. There again, ontologies (Gruber, 1993; Borst, 1997) have been successfully applied thus far to solve several interoperability problems. Hence, ontologies should help solve also the problems and limitations of linguistic annotation tools aforementioned. Thus, to summarise, the main aim of the present work was to combine somehow these separated approaches, mechanisms and tools for annotation from Linguistics and Ontological Engineering (and the Semantic Web) in a sort of hybrid (linguistic and ontological) annotation model, suitable for both areas. This hybrid (semantic) annotation model should (a) benefit from the advances, models, techniques, mechanisms and tools of these two areas; (b) minimise (and even solve, when possible) some of the problems found in each of them; and (c) be suitable for the Semantic Web. The concrete goals that helped attain this aim are presented in the following section. 2. GOALS OF THE PRESENT WORK As mentioned above, the main goal of this work was to specify a hybrid (that is, linguistically-motivated and ontology-based) model of annotation suitable for the Semantic Web (i.e. it had to produce a semantic annotation of web page contents). This entailed that the tags included in the annotations of the model had to (1) represent linguistic concepts (or linguistic categories, as they are termed in ISO/DCR (2008)), in order for this model to be linguistically-motivated; (2) be ontological terms (i.e., use an ontological vocabulary), in order for the model to be ontology-based; and (3) be structured (linked) as a collection of ontology-based triples, as in the usual Semantic Web languages (namely RDF(S) and OWL), in order for the model to be considered suitable for the Semantic Web. Besides, to be useful for the Semantic Web, this model should provide a way to automate the annotation of web pages. As for the present work, this requirement involved reusing the linguistic annotation tools purchased by the OEG research group (http://www.oeg-upm.net), but solving beforehand (or, at least, minimising) some of their limitations. Therefore, this model had to minimise these limitations by means of the integration of several linguistic annotation tools into a common architecture. Since this integration required the interoperation of tools and their annotations, ontologies were proposed as the main technological component to make them effectively interoperate. From the very beginning, it seemed that the formalisation of the elements and the knowledge underlying linguistic annotations within an appropriate set of ontologies would be a great step forward towards the formulation of such a model (henceforth referred to as OntoTag). Obviously, first, to combine the results of the linguistic annotation tools that operated at the same level, their annotation schemas had to be unified (or, preferably, standardised) in advance. This entailed the unification (id. standardisation) of their tags (both their representation and their meaning), and their format or syntax. Second, to merge the results of the linguistic annotation tools operating at different levels, their respective annotation schemas had to be (a) made interoperable and (b) integrated. And third, in order for the resulting annotations to suit the Semantic Web, they had to be specified by means of an ontology-based vocabulary, and structured by means of ontology-based triples, as hinted above. Therefore, a new annotation scheme had to be devised, based both on ontologies and on this type of triples, which allowed for the combination and the integration of the annotations of any set of linguistic annotation tools. This annotation scheme was considered a fundamental part of the model proposed here, and its development was, accordingly, another major objective of the present work. All these goals, aims and objectives could be re-stated more clearly as follows: Goal 1: Development of a set of ontologies for the formalisation of the linguistic knowledge relating linguistic annotation. Sub-goal 1.1: Ontological formalisation of the EAGLES (1996a; 1996b) de facto standards for morphosyntactic and syntactic annotation, in a way that helps respect the triple structure recommended for annotations in these works (which is isomorphic to the triple structures used in the context of the Semantic Web). Sub-goal 1.2: Incorporation into this preliminary ontological formalisation of other existing standards and standard proposals relating the levels mentioned above, such as those currently under development within ISO/TC 37 (the ISO Technical Committee dealing with Terminology, which deals also with linguistic resources and annotations). Sub-goal 1.3: Generalisation and extension of the recommendations in EAGLES (1996a; 1996b) and ISO/TC 37 to the semantic level, for which no ISO/TC 37 standards have been developed yet. Sub-goal 1.4: Ontological formalisation of the generalisations and/or extensions obtained in the previous sub-goal as generalisations and/or extensions of the corresponding ontology (or ontologies). Sub-goal 1.5: Ontological formalisation of the knowledge required to link, combine and unite the knowledge represented in the previously developed ontology (or ontologies). Goal 2: Development of OntoTag’s annotation scheme, a standard-based abstract scheme for the hybrid (linguistically-motivated and ontological-based) annotation of texts. Sub-goal 2.1: Development of the standard-based morphosyntactic annotation level of OntoTag’s scheme. This level should include, and possibly extend, the recommendations of EAGLES (1996a) and also the recommendations included in the ISO/MAF (2008) standard draft. Sub-goal 2.2: Development of the standard-based syntactic annotation level of the hybrid abstract scheme. This level should include, and possibly extend, the recommendations of EAGLES (1996b) and the ISO/SynAF (2010) standard draft. Sub-goal 2.3: Development of the standard-based semantic annotation level of OntoTag’s (abstract) scheme. Sub-goal 2.4: Development of the mechanisms for a convenient integration of the three annotation levels already mentioned. These mechanisms should take into account the recommendations included in the ISO/LAF (2009) standard draft. Goal 3: Design of OntoTag’s (abstract) annotation architecture, an abstract architecture for the hybrid (semantic) annotation of texts (i) that facilitates the integration and interoperation of different linguistic annotation tools, and (ii) whose results comply with OntoTag’s annotation scheme. Sub-goal 3.1: Specification of the decanting processes that allow for the classification and separation, according to their corresponding levels, of the results of the linguistic tools annotating at several different levels. Sub-goal 3.2: Specification of the standardisation processes that allow (a) complying with the standardisation requirements of OntoTag’s annotation scheme, as well as (b) combining the results of those linguistic tools that share some level of annotation. Sub-goal 3.3: Specification of the merging processes that allow for the combination of the output annotations and the interoperation of those linguistic tools that share some level of annotation. Sub-goal 3.4: Specification of the merge processes that allow for the integration of the results and the interoperation of those tools performing their annotations at different levels. Goal 4: Generation of OntoTagger’s schema, a concrete instance of OntoTag’s abstract scheme for a concrete set of linguistic annotations. These linguistic annotations result from the tools and the resources available in the research group, namely • Bitext’s DataLexica (http://www.bitext.com/EN/datalexica.asp), • LACELL’s (POS) tagger (http://www.um.es/grupos/grupo-lacell/quees.php), • Connexor’s FDG (http://www.connexor.eu/technology/machinese/glossary/fdg/), and • EuroWordNet (Vossen et al., 1998). This schema should help evaluate OntoTag’s underlying hypotheses, stated below. Consequently, it should implement, at least, those levels of the abstract scheme dealing with the annotations of the set of tools considered in this implementation. This includes the morphosyntactic, the syntactic and the semantic levels. Goal 5: Implementation of OntoTagger’s configuration, a concrete instance of OntoTag’s abstract architecture for this set of linguistic tools and annotations. This configuration (1) had to use the schema generated in the previous goal; and (2) should help support or refute the hypotheses of this work as well (see the next section). Sub-goal 5.1: Implementation of the decanting processes that facilitate the classification and separation of the results of those linguistic resources that provide annotations at several different levels (on the one hand, LACELL’s tagger operates at the morphosyntactic level and, minimally, also at the semantic level; on the other hand, FDG operates at the morphosyntactic and the syntactic levels and, minimally, at the semantic level as well). Sub-goal 5.2: Implementation of the standardisation processes that allow (i) specifying the results of those linguistic tools that share some level of annotation according to the requirements of OntoTagger’s schema, as well as (ii) combining these shared level results. In particular, all the tools selected perform morphosyntactic annotations and they had to be conveniently combined by means of these processes. Sub-goal 5.3: Implementation of the merging processes that allow for the combination (and possibly the improvement) of the annotations and the interoperation of the tools that share some level of annotation (in particular, those relating the morphosyntactic level, as in the previous sub-goal). Sub-goal 5.4: Implementation of the merging processes that allow for the integration of the different standardised and combined annotations aforementioned, relating all the levels considered. Sub-goal 5.5: Improvement of the semantic level of this configuration by adding a named entity recognition, (sub-)classification and annotation subsystem, which also uses the named entities annotated to populate a domain ontology, in order to provide a concrete application of the present work in the two areas involved (the Semantic Web and Corpus Linguistics). 3. MAIN RESULTS: ASSESSMENT OF ONTOTAG’S UNDERLYING HYPOTHESES The model developed in the present thesis tries to shed some light on (i) whether linguistic annotation tools can effectively interoperate; (ii) whether their results can be combined and integrated; and, if they can, (iii) how they can, respectively, interoperate and be combined and integrated. Accordingly, several hypotheses had to be supported (or rejected) by the development of the OntoTag model and OntoTagger (its implementation). The hypotheses underlying OntoTag are surveyed below. Only one of the hypotheses (H.6) was rejected; the other five could be confirmed. H.1 The annotations of different levels (or layers) can be integrated into a sort of overall, comprehensive, multilayer and multilevel annotation, so that their elements can complement and refer to each other. • CONFIRMED by the development of: o OntoTag’s annotation scheme, o OntoTag’s annotation architecture, o OntoTagger’s (XML, RDF, OWL) annotation schemas, o OntoTagger’s configuration. H.2 Tool-dependent annotations can be mapped onto a sort of tool-independent annotations and, thus, can be standardised. • CONFIRMED by means of the standardisation phase incorporated into OntoTag and OntoTagger for the annotations yielded by the tools. H.3 Standardisation should ease: H.3.1: The interoperation of linguistic tools. H.3.2: The comparison, combination (at the same level and layer) and integration (at different levels or layers) of annotations. • H.3 was CONFIRMED by means of the development of OntoTagger’s ontology-based configuration: o Interoperation, comparison, combination and integration of the annotations of three different linguistic tools (Connexor’s FDG, Bitext’s DataLexica and LACELL’s tagger); o Integration of EuroWordNet-based, domain-ontology-based and named entity annotations at the semantic level. o Integration of morphosyntactic, syntactic and semantic annotations. H.4 Ontologies and Semantic Web technologies (can) play a crucial role in the standardisation of linguistic annotations, by providing consensual vocabularies and standardised formats for annotation (e.g., RDF triples). • CONFIRMED by means of the development of OntoTagger’s RDF-triple-based annotation schemas. H.5 The rate of errors introduced by a linguistic tool at a given level, when annotating, can be reduced automatically by contrasting and combining its results with the ones coming from other tools, operating at the same level. However, these other tools might be built following a different technological (stochastic vs. rule-based, for example) or theoretical (dependency vs. HPS-grammar-based, for instance) approach. • CONFIRMED by the results yielded by the evaluation of OntoTagger. H.6 Each linguistic level can be managed and annotated independently. • REJECTED: OntoTagger’s experiments and the dependencies observed among the morphosyntactic annotations, and between them and the syntactic annotations. In fact, Hypothesis H.6 was already rejected when OntoTag’s ontologies were developed. We observed then that several linguistic units stand on an interface between levels, belonging thereby to both of them (such as morphosyntactic units, which belong to both the morphological level and the syntactic level). Therefore, the annotations of these levels overlap and cannot be handled independently when merged into a unique multileveled annotation. 4. OTHER MAIN RESULTS AND CONTRIBUTIONS First, interoperability is a hot topic for both the linguistic annotation community and the whole Computer Science field. The specification (and implementation) of OntoTag’s architecture for the combination and integration of linguistic (annotation) tools and annotations by means of ontologies shows a way to make these different linguistic annotation tools and annotations interoperate in practice. Second, as mentioned above, the elements involved in linguistic annotation were formalised in a set (or network) of ontologies (OntoTag’s linguistic ontologies). • On the one hand, OntoTag’s network of ontologies consists of − The Linguistic Unit Ontology (LUO), which includes a mostly hierarchical formalisation of the different types of linguistic elements (i.e., units) identifiable in a written text; − The Linguistic Attribute Ontology (LAO), which includes also a mostly hierarchical formalisation of the different types of features that characterise the linguistic units included in the LUO; − The Linguistic Value Ontology (LVO), which includes the corresponding formalisation of the different values that the attributes in the LAO can take; − The OIO (OntoTag’s Integration Ontology), which  Includes the knowledge required to link, combine and unite the knowledge represented in the LUO, the LAO and the LVO;  Can be viewed as a knowledge representation ontology that describes the most elementary vocabulary used in the area of annotation. • On the other hand, OntoTag’s ontologies incorporate the knowledge included in the different standards and recommendations for linguistic annotation released so far, such as those developed within the EAGLES and the SIMPLE European projects or by the ISO/TC 37 committee: − As far as morphosyntactic annotations are concerned, OntoTag’s ontologies formalise the terms in the EAGLES (1996a) recommendations and their corresponding terms within the ISO Morphosyntactic Annotation Framework (ISO/MAF, 2008) standard; − As for syntactic annotations, OntoTag’s ontologies incorporate the terms in the EAGLES (1996b) recommendations and their corresponding terms within the ISO Syntactic Annotation Framework (ISO/SynAF, 2010) standard draft; − Regarding semantic annotations, OntoTag’s ontologies generalise and extend the recommendations in EAGLES (1996a; 1996b) and, since no stable standards or standard drafts have been released for semantic annotation by ISO/TC 37 yet, they incorporate the terms in SIMPLE (2000) instead; − The terms coming from all these recommendations and standards were supplemented by those within the ISO Data Category Registry (ISO/DCR, 2008) and also of the ISO Linguistic Annotation Framework (ISO/LAF, 2009) standard draft when developing OntoTag’s ontologies. Third, we showed that the combination of the results of tools annotating at the same level can yield better results (both in precision and in recall) than each tool separately. In particular, 1. OntoTagger clearly outperformed two of the tools integrated into its configuration, namely DataLexica and FDG in all the combination sub-phases in which they overlapped (i.e. POS tagging, lemma annotation and morphological feature annotation). As far as the remaining tool is concerned, i.e. LACELL’s tagger, it was also outperformed by OntoTagger in POS tagging and lemma annotation, and it did not behave better than OntoTagger in the morphological feature annotation layer. 2. As an immediate result, this implies that a) This type of combination architecture configurations can be applied in order to improve significantly the accuracy of linguistic annotations; and b) Concerning the morphosyntactic level, this could be regarded as a way of constructing more robust and more accurate POS tagging systems. Fourth, Semantic Web annotations are usually performed by humans or else by machine learning systems. Both of them leave much to be desired: the former, with respect to their annotation rate; the latter, with respect to their (average) precision and recall. In this work, we showed how linguistic tools can be wrapped in order to annotate automatically Semantic Web pages using ontologies. This entails their fast, robust and accurate semantic annotation. As a way of example, as mentioned in Sub-goal 5.5, we developed a particular OntoTagger module for the recognition, classification and labelling of named entities, according to the MUC and ACE tagsets (Chinchor, 1997; Doddington et al., 2004). These tagsets were further specified by means of a domain ontology, namely the Cinema Named Entities Ontology (CNEO). This module was applied to the automatic annotation of ten different web pages containing cinema reviews (that is, around 5000 words). In addition, the named entities annotated with this module were also labelled as instances (or individuals) of the classes included in the CNEO and, then, were used to populate this domain ontology. • The statistical results obtained from the evaluation of this particular module of OntoTagger can be summarised as follows. On the one hand, as far as recall (R) is concerned, (R.1) the lowest value was 76,40% (for file 7); (R.2) the highest value was 97, 50% (for file 3); and (R.3) the average value was 88,73%. On the other hand, as far as the precision rate (P) is concerned, (P.1) its minimum was 93,75% (for file 4); (R.2) its maximum was 100% (for files 1, 5, 7, 8, 9, and 10); and (R.3) its average value was 98,99%. • These results, which apply to the tasks of named entity annotation and ontology population, are extraordinary good for both of them. They can be explained on the basis of the high accuracy of the annotations provided by OntoTagger at the lower levels (mainly at the morphosyntactic level). However, they should be conveniently qualified, since they might be too domain- and/or language-dependent. It should be further experimented how our approach works in a different domain or a different language, such as French, English, or German. • In any case, the results of this application of Human Language Technologies to Ontology Population (and, accordingly, to Ontological Engineering) seem very promising and encouraging in order for these two areas to collaborate and complement each other in the area of semantic annotation. Fifth, as shown in the State of the Art of this work, there are different approaches and models for the semantic annotation of texts, but all of them focus on a particular view of the semantic level. Clearly, all these approaches and models should be integrated in order to bear a coherent and joint semantic annotation level. OntoTag shows how (i) these semantic annotation layers could be integrated together; and (ii) they could be integrated with the annotations associated to other annotation levels. Sixth, we identified some recommendations, best practices and lessons learned for annotation standardisation, interoperation and merge. They show how standardisation (via ontologies, in this case) enables the combination, integration and interoperation of different linguistic tools and their annotations into a multilayered (or multileveled) linguistic annotation, which is one of the hot topics in the area of Linguistic Annotation. And last but not least, OntoTag’s annotation scheme and OntoTagger’s annotation schemas show a way to formalise and annotate coherently and uniformly the different units and features associated to the different levels and layers of linguistic annotation. This is a great scientific step ahead towards the global standardisation of this area, which is the aim of ISO/TC 37 (in particular, Subcommittee 4, dealing with the standardisation of linguistic annotations and resources).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article describes a knowledge-based method for generating multimedia descriptions that summarize the behavior of dynamic systems. We designed this method for users who monitor the behavior of a dynamic system with the help of sensor networks and make decisions according to prefixed management goals. Our method generates presentations using different modes such as text in natural language, 2D graphics and 3D animations. The method uses a qualitative representation of the dynamic system based on hierarchies of components and causal influences. The method includes an abstraction generator that uses the system representation to find and aggregate relevant data at an appropriate level of abstraction. In addition, the method includes a hierarchical planner to generate a presentation using a model with dis- course patterns. Our method provides an efficient and flexible solution to generate concise and adapted multimedia presentations that summarize thousands of time series. It is general to be adapted to differ- ent dynamic systems with acceptable knowledge acquisition effort by reusing and adapting intuitive rep- resentations. We validated our method and evaluated its practical utility by developing several models for an application that worked in continuous real time operation for more than 1 year, summarizing sen- sor data of a national hydrologic information system in Spain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detecting user affect automatically during real-time conversation is the main challenge towards our greater aim of infusing social intelligence into a natural-language mixed-initiative High-Fidelity (Hi-Fi) audio control spoken dialog agent. In recent years, studies on affect detection from voice have moved on to using realistic, non-acted data, which is subtler. However, it is more challenging to perceive subtler emotions and this is demonstrated in tasks such as labelling and machine prediction. This paper attempts to address part of this challenge by considering the role of user satisfaction ratings and also conversational/dialog features in discriminating contentment and frustration, two types of emotions that are known to be prevalent within spoken human-computer interaction. However, given the laboratory constraints, users might be positively biased when rating the system, indirectly making the reliability of the satisfaction data questionable. Machine learning experiments were conducted on two datasets, users and annotators, which were then compared in order to assess the reliability of these datasets. Our results indicated that standard classifiers were significantly more successful in discriminating the abovementioned emotions and their intensities (reflected by user satisfaction ratings) from annotator data than from user data. These results corroborated that: first, satisfaction data could be used directly as an alternative target variable to model affect, and that they could be predicted exclusively by dialog features. Second, these were only true when trying to predict the abovementioned emotions using annotator?s data, suggesting that user bias does exist in a laboratory-led evaluation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the design, development and field evaluation of a machine translation system from Spanish to Spanish Sign Language (LSE: Lengua de Signos Española). The developed system focuses on helping Deaf people when they want to renew their Driver’s License. The system is made up of a speech recognizer (for decoding the spoken utterance into a word sequence), a natural language translator (for converting a word sequence into a sequence of signs belonging to the sign language), and a 3D avatar animation module (for playing back the signs). For the natural language translator, three technological approaches have been implemented and evaluated: an example-based strategy, a rule-based translation method and a statistical translator. For the final version, the implemented language translator combines all the alternatives into a hierarchical structure. This paper includes a detailed description of the field evaluation. This evaluation was carried out in the Local Traffic Office in Toledo involving real government employees and Deaf people. The evaluation includes objective measurements from the system and subjective information from questionnaires. The paper details the main problems found and a discussion on how to solve them (some of them specific for LSE).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the work on infusion of emotion into a limited-task autonomous spoken conversational agent situated in the domestic environment, using a need-inspired task-independent emotion model (NEMO). In order to demonstrate the generation of affect through the use of the model, we describe the work of integrating it with a natural-language mixed-initiative HiFi-control spoken conversational agent (SCA). NEMO and the host system communicate externally, removing the need for the Dialog Manager to be modified, as is done in most existing dialog systems, in order to be adaptive. The first part of the paper concerns the integration between NEMO and the host agent. The second part summarizes the work on automatic affect prediction, namely, frustration and contentment, from dialog features, a non-conventional source, in the attempt of moving towards a more user-centric approach. The final part reports the evaluation results obtained from a user study, in which both versions of the agent (non-adaptive and emotionally-adaptive) were compared. The results provide substantial evidences with respect to the benefits of adding emotion in a spoken conversational agent, especially in mitigating users' frustrations and, ultimately, improving their satisfaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta tesis tiene por objeto estudiar las posibilidades de realizar en castellano tareas relativas a la resolución de problemas con sistemas basados en el conocimiento. En los dos primeros capítulos se plantea un análisis de la trayectoria seguida por las técnicas de tratamiento del lenguaje natural, prestando especial interés a los formalismos lógicos para la comprensión del lenguaje. Seguidamente, se plantea una valoración de la situación actual de los sistemas de tratamiento del lenguaje natural. Finalmente, se presenta lo que constituye el núcleo de este trabajo, un sistema llamado Sirena, que permite realizar tareas de adquisición, comprensión, recuperación y explicación de conocimiento en castellano con sistemas basados en el conocimiento. Este sistema contiene un subconjunto del castellano amplio pero simple formalizado con una gramática lógica. El significado del conocimiento se basa en la lógica y ha sido implementado en el lenguaje de programación lógica Prolog II vS. Palabras clave: Programación Lógica, Comprensión del Lenguaje Natural, Resolución de Problemas, Gramáticas Lógicas, Lingüistica Computacional, Inteligencia Artificial.---ABSTRACT---The purpose of this thesis is to study the possibi1 ities of performing in Spanish problem solving tasks with knowledge based systems. Ule study the development of the techniques for natural language processing with a particular interest in the logical formalisms that have been used to understand natural languages. Then, we present an evaluation of the current state of art in the field of natural language processing systems. Finally, we introduce the main contribution of our work, Sirena a system that allows the adquisition, understanding, retrieval and explanation of knowledge in Spanish with knowledge based systems. Sirena can deal with a large, although simple» subset of Spanish. This subset has been formalised by means of a logic grammar and the meaning of knowledge is based on logic. Sirena has been implemented in the programming language Prolog II v2. Keywords: Logic Programming, Understanding Natural Language, Problem Solving, Logic Grammars, Cumputational Linguistic, Artificial Intelligence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the application of language translation technologies for generating bus information in Spanish Sign Language (LSE: Lengua de Signos Española). In this work, two main systems have been developed: the first for translating text messages from information panels and the second for translating spoken Spanish into natural conversations at the information point of the bus company. Both systems are made up of a natural language translator (for converting a word sentence into a sequence of LSE signs), and a 3D avatar animation module (for playing back the signs). For the natural language translator, two technological approaches have been analyzed and integrated: an example-based strategy and a statistical translator. When translating spoken utterances, it is also necessary to incorporate a speech recognizer for decoding the spoken utterance into a word sequence, prior to the language translation module. This paper includes a detailed description of the field evaluation carried out in this domain. This evaluation has been carried out at the customer information office in Madrid involving both real bus company employees and deaf people. The evaluation includes objective measurements from the system and information from questionnaires. In the field evaluation, the whole translation presents an SER (Sign Error Rate) of less than 10% and a BLEU greater than 90%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important part of human intelligence, both historically and operationally, is our ability to communicate. We learn how to communicate, and maintain our communicative skills, in a society of communicators – a highly effective way to reach and maintain proficiency in this complex skill. Principles that might allow artificial agents to learn language this way are in completely known at present – the multi-dimensional nature of socio-communicative skills are beyond every machine learning framework so far proposed. Our work begins to address the challenge of proposing a way for observation-based machine learning of natural language and communication. Our framework can learn complex communicative skills with minimal up-front knowledge. The system learns by incrementally producing predictive models of causal relationships in observed data, guided by goal-inference and reasoning using forward-inverse models. We present results from two experiments where our S1 agent learns human communication by observing two humans interacting in a realtime TV-style interview, using multimodal communicative gesture and situated language to talk about recycling of various materials and objects. S1 can learn multimodal complex language and multimodal communicative acts, a vocabulary of 100 words forming natural sentences with relatively complex sentence structure, including manual deictic reference and anaphora. S1 is seeded only with high-level information about goals of the interviewer and interviewee, and a small ontology; no grammar or other information is provided to S1 a priori. The agent learns the pragmatics, semantics, and syntax of complex utterances spoken and gestures from scratch, by observing the humans compare and contrast the cost and pollution related to recycling aluminum cans, glass bottles, newspaper, plastic, and wood. After 20 hours of observation S1 can perform an unscripted TV interview with a human, in the same style, without making mistakes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En el presente Trabajo de Fin de Máster se ha realizado un análisis sobre las técnicas y herramientas de Generación de Lenguaje Natural (GLN), así como las modificaciones a la herramienta Simple NLG para generar expresiones en el idioma Español. Dicha extensión va a permitir ampliar el grupo de personas a las cuales se les transmite la información, ya que alrededor de 540 millones de personas hablan español. Keywords - Generación de Lenguaje Natural, técnicas de GLN, herramientas de GLN, Inteligencia Artificial, análisis, SimpleNLG.---ABSTRACT---In this Master's Thesis has been performed an analysis on techniques and tools for Natural Language Generation (NLG), also the Simple NLG tool has been modified in order to generate expressions in the Spanish language. This modification will allow transmitting the information to more people; around 540 million people speak Spanish. Keywords - Natural Language Generation, NLG tools, NLG techniques, Artificial Intelligence, analysis, SimpleNLG.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En el trabajo que aquí presentamos se incluye la base teórica (sintaxis y semántica) y una implementación de un framework para codificar el razonamiento de la representación difusa o borrosa del mundo (tal y como nosotros, seres humanos, entendemos éste). El interés en la realización de éste trabajo parte de dos fuentes: eliminar la complejidad existente cuando se realiza una implementación con un lenguaje de programación de los llamados de propósito general y proporcionar una herramienta lo suficientemente inteligente para dar respuestas de forma constructiva a consultas difusas o borrosas. El framework, RFuzzy, permite codificar reglas y consultas en una sintaxis muy cercana al lenguaje natural usado por los seres humanos para expresar sus pensamientos, pero es bastante más que eso. Permite representar conceptos muy interesantes, como fuzzificaciones (funciones usadas para convertir conceptos no difusos en difusos), valores por defecto (que se usan para devolver resultados un poco menos válidos que los que devolveríamos si tuviésemos la información necesaria para calcular los más válidos), similaridad entre atributos (característica que utilizamos para buscar aquellos individuos en la base de datos con una característica similar a la buscada), sinónimos o antónimos y, además, nos permite extender el numero de conectivas y modificadores (incluyendo modificadores de negación) que podemos usar en las reglas y consultas. La personalización de la definición de conceptos difusos (muy útil para lidiar con el carácter subjetivo de los conceptos borrosos, donde nos encontramos con que cualificar a alguien de “alto” depende de la altura de la persona que cualifica) es otra de las facilidades incluida. Además, RFuzzy implementa la semántica multi-adjunta. El interés en esta reside en que introduce la posibilidad de obtener la credibilidad de una regla a partir de un conjunto de datos y una regla dada y no solo el grado de satisfacción de una regla a partir de el universo modelado en nuestro programa. De esa forma podemos obtener automáticamente la credibilidad de una regla para una determinada situación. Aún cuando la contribución teórica de la tesis es interesante en si misma, especialmente la inclusión del modificador de negacion, sus multiples usos practicos lo son también. Entre los diferentes usos que se han dado al framework destacamos el reconocimiento de emociones, el control de robots, el control granular en computacion paralela/distribuída y las busquedas difusas o borrosas en bases de datos. ABSTRACT In this work we provide a theoretical basis (syntax and semantics) and a practical implementation of a framework for encoding the reasoning and the fuzzy representation of the world (as human beings understand it). The interest for this work comes from two sources: removing the existing complexity when doing it with a general purpose programming language (one developed without focusing in providing special constructions for representing fuzzy information) and providing a tool intelligent enough to answer, in a constructive way, expressive queries over conventional data. The framework, RFuzzy, allows to encode rules and queries in a syntax very close to the natural language used by human beings to express their thoughts, but it is more than that. It allows to encode very interesting concepts, as fuzzifications (functions to easily fuzzify crisp concepts), default values (used for providing results less adequate but still valid when the information needed to provide results is missing), similarity between attributes (used to search for individuals with a characteristic similar to the one we are looking for), synonyms or antonyms and it allows to extend the number of connectives and modifiers (even negation) we can use in the rules. The personalization of the definition of fuzzy concepts (very useful for dealing with the subjective character of fuzziness, in which a concept like tall depends on the height of the person performing the query) is another of the facilities included. Besides, RFuzzy implements the multi-adjoint semantics. The interest in them is that in addition to obtaining the grade of satisfaction of a consequent from a rule, its credibility and the grade of satisfaction of the antecedents we can determine from a set of data how much credibility we must assign to a rule to model the behaviour of the set of data. So, we can determine automatically the credibility of a rule for a particular situation. Although the theoretical contribution is interesting by itself, specially the inclusion of the negation modifier, the practical usage of it is equally important. Between the different uses given to the framework we highlight emotion recognition, robocup control, granularity control in parallel/distributed computing and flexible searches in databases.