3 resultados para Nattier, Jean-Marc, 1685-1766.

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

tThe rate of metabolic processes demanding energy in tree stems changes in relation with prevailing cli-matic conditions. Tree water availability can affect stem respiration through impacts on growth, phloemtransport or maintenance of diverse cellular processes, but little is known on this topic. Here we moni-tored seasonal changes in stem CO2efflux (Fs), radial growth, sap flow and non-structural carbohydrates intrees of Quercus ilex in a Mediterranean forest stand subjected since 2003 to either partial (33%) through-fall exclusion (E) or unchanged throughfall (C). Fsincreased exponentially during the day by an effectof temperature, although sap flow attenuated the increase in Fsduring the day time. Over the year, Fsalso increased exponentially with increasing temperatures, but Fscomputed at a standard temperatureof 15?C (F15s) varied by almost 4-fold among dates. F15swas the highest after periods of stem growth anddecreased as tree water availability decreased, similarly in C and E treatments. The decline in F15swas notlinked to a depletion of soluble sugars, which increased when water stress was higher. The proportionof ecosystem respiration attributed to the stems was highest following stem growth (23.3%) and lowestduring the peak of drought (6.5%). High within-year variability in F15smakes unadvisable to pool annualdata of Fsvs. temperature to model Fsat short time scales (hours to months) in Mediterranean-type for-est ecosystems. We demonstrate that water availability is an important factor governing stem CO2effluxand suggest that trees in Mediterranean environments acclimate to seasonal drought by reducing stemrespiration. Stem respiratory rates do not seem to change after a long-term increase in drought intensity,however.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on a case study of the impact of fabrication steps on InN material properties. We discuss the influence of annealing time and sequence of device processing steps. Photoluminescence (PL), surface morphology and electrical transport (electrical resistivity and low frequency noise) properties have been studied as responses to the adopted fabrication steps. Surface morphology has a strong correlation with annealing times, while sequences of fabrication steps do not appear to be influential. In contrast, the optical and electrical properties demonstrate correlation with both etching and thermal annealing. For all the studied samples PL peaks were in the vicinity of 0.7 eV, but the intensity and full width at half maximum (FWHM) demonstrate a dependence on the technological steps followed. Sheet resistance and electrical resistivity seem to be lower in the case of high defect introduction due to both etching and thermal treatments. The same effect is revealed through 1/f noise level measurements. A reduction of electrical resistivity is connected to an increase in 1/f noise level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All around the ITER vacuum vessel, forty-four ports will provide access to the vacuum vessel for remotehandling operations, diagnostic systems, heating, and vacuum systems: 18 upper ports, 17 equatorialports, and 9 lower ports. Among the lower ports, three of them will be used for the remote handlinginstallation of the ITER divertor. Once the divertor is in place, these ports will host various diagnosticsystems mounted in the so-called diagnostic racks. The diagnostic racks must allow the support andcooling of the diagnostics, extraction of the required diagnostic signals, and providing access and main-tainability while minimizing the leakage of radiation toward the back of the port where the humans areallowed to enter. A fully integrated inner rack, carrying the near plasma diagnostic components, will bean stainless steel structure, 4.2 m long, with a maximum weight of 10 t. This structure brings water forcooling and baking at maximum temperature of 240?C and provides connection with gas, vacuum andelectric services. Additional racks (placed away from plasma and not requiring cooling) may be requiredfor the support of some particular diagnostic components. The diagnostics racks and its associated exvessel structures, which are in its conceptual design phase, are being designed to survive the lifetimeof ITER of 20 years. This paper presents the current state of development including interfaces, diagnos-tic integration, operation and maintenance, shielding requirements, remote handling, loads cases anddiscussion of the main challenges coming from the severe environment and engineering requirements.