2 resultados para Nanopillar
em Universidad Politécnica de Madrid
Resumo:
We present the fabrication of silicon dioxide (SiO2) coated silicon nanopillar array structures and demonstrate their application as sensitive optical biosensors. Colloidal lithography, plasma dry etching and deposition processes are used to fabricate SiO2 coated Si nanopillar arrays with two different diameters and periods. Proof of concept bio recognition experiments are carried out with the bovine serum albumin (BSA)/antiBSA model system using Fourier transform visible and IR spectrometry (FT-VIS-IR) in reflection mode. A limit of detection (LoD) value of 5.2 ng/ml is estimated taking in to account the wavenumber uncertainty in the measurements.
Resumo:
The last few years have highlighted the existence of two relevant length scales in the quest to ultrahigh-strength polycrystalline metals. Whereas the microstructural length scale – e.g. grain or twin size – has mainly be linked to the well-established Hall–Petch relationship, the sample length scale – e.g. nanopillar size – has also proven to be at least as relevant, especially in microscale structures. In this letter, a series of ballistic tests on functionally graded nanocrystalline plates are used as a basis for the justification of a “grain size gradient length scale” as an additional ballistic properties optimization parameter.