3 resultados para NUCLEAR REACTIONS
em Universidad Politécnica de Madrid
Resumo:
For a number of important nuclides, complete activation data libraries with covariance data will be produced, so that uncertainty propagation in fuel cycle codes (in this case ACAB,FISPIN, ...) can be developed and tested. Eventually, fuel inventory codes should be able to handle the complete set of uncertainty data, i.e. those of nuclear reactions (cross sections, etc.), radioactive decay and fission yield data. For this, capabilities will be developed both to produce covariance data and to propagate the uncertainties through the inventory calculations.
Resumo:
The basics of laser driven neutron sources, properties and possible applications are discussed. We describe the laser driven nuclear processes which trigger neutron generation, namely, nuclear reactions induced by laser driven ion beam (ion n), thermonuclear fusion by implosion and photo-induced nuclear (gamma n) reactions. Based on their main properties, i.e. point source (<100 μm) and short durations (< ns), different applications are described, such as radiography, time-resolved spectroscopy and pump-probe experiments. Prospects on the development of laser technology suggest that, as higher intensities and higher repetition rate lasers become available (for example, using DPSSL technology), laser driven methodologies may provide neutron fluxes comparable to that achieved by accelerator driven neutron sources in the near future.
Resumo:
The assessment of the accuracy of parameters related to the reactor core performance (e.g., ke) and f el cycle (e.g., isotopic evolution/transmutation) due to the uncertainties in the basic nuclear data (ND) is a critical issue. Different error propagation techniques (adjoint/forward sensitivity analysis procedures and/or Monte Carlo technique) can be used to address by computational simulation the systematic propagation of uncertainties on the final parameters. To perform this uncertainty assessment, the ENDF covariance les (variance/correlation in energy and cross- reactions-isotopes correlations) are required. In this paper, we assess the impact of ND uncertainties on the isotopic prediction for a conceptual design of a modular European Facility for Industrial Transmutation (EFIT) for a discharge burnup of 150 GWd/tHM. The complete set of uncertainty data for cross sections (EAF2007/UN, SCALE6.0/COVA-44G), radioactive decay and fission yield data (JEFF-3.1.1) are processed and used in ACAB code.