15 resultados para NM LASER
em Universidad Politécnica de Madrid
Resumo:
Objetivos : Analizar la distribución de energía en un tejido cuando se emplea terapia por láser de baja potencia y estudiar las especificaciones mínimas de equipos de terapia láser para estimar la dosis. Material y métodos: Se ha empleado el método de Monte Carlo para obtener la distribución de energía absorbida por la piel para dos tipos de láser y la teoría de la difusión para estimar la longitud de penetración y el recorrido libre medio. Se ha estudiado la variación de esa distribución en función de la raza (caucásico, asiático, afroamericano) y para dos localizaciones anatómicas distintas. Se ha analizado la información facilitada por diversos fabricantes de equipos comerciales para determinar si es necesario adaptar la dosimetría recomendada. Resultados: La radiación láser infrarroja (810nm) se absorbe mayoritariamente en un espesor de piel de 1,9±0,2mm para caucásicos, entre 1,73±0,08mm (volar del antebrazo) y 1,80±0,11mm (palma) para asiáticos y entre 1,25±0,09mm (volar del antebrazo) y 1,65±0,2mm (palma) para afroamericanos. El recorrido libre medio de la luz siempre es menor que 0,69±0,09mm. Para los equipos comerciales analizados la única característica geométrica del haz láser que se menciona es la superficie que oscila entre 0,08 y 1cm2, pero no se especifica cómo es la distribución de energía, la divergencia del haz, forma de la sección transversal, etc. Conclusiones:Dependiendo del equipo de terapia por láser de baja potencia utilizado, el tipo de paciente y la zona a tratar, el clínico debe adaptar las dosis recomendadas. Abstract: Objectives: To analyze the distribution of energy deposited in a tissue when this is irradiated with a low power laser and to study the minimum characteristics that manufacturers of low power laser therapy equipments should include to estimate the dosage. Material and methods: Monte Carlo simulation was performed to determine the absorption location of the laser energy. The diffusion theory was used to estimate penetration depth and mean free path. Variation of this distribution was studied based on three different skin types (Caucasians, Asians and Afroamericans) and for two different anatomic locations: palm and volar forearm. Information given by several manufactures of low power laser therapy equipments has been analyzed. Results: Infrared (810 nm) laser radiation is mainly absorbed in a skin layer of thickness 1.9±0.2mm for Caucasians, from 1.73±0.08mm (volar forearm) to 1.80±0.11mm (palm) for Asians, and from 1.25±0.09mm (volar forearm) to 1.65±0.2mm (palm) for Afroamericans. The light mean free path is lower than 0.69±0.09mm for all cases. The laser beam characteristics (beam shape, energy distribution on a transversal section, divergence, incidence angle,etc.) are not usually specified by the manufacturers. Only beam size (ranging from 0.08 to 1cm2) is given in some cases. Discussion and conclusions: Depending on the low power laser therapy equipment, on the patient and on the anatomic area to be treated, the staff should adapt the recommended dosage for each individual case.
Resumo:
In this work we propose a method for cleaving silicon-based photonic chips by using a laser based micromachining system, consisting of a ND:YVO4laser emitting at 355 nm in nanosecond pulse regime and a micropositioning system. The laser makes grooved marks placed at the desired locations and directions where cleaves have to be initiated, and after several processing steps, a crack appears and propagate along the crystallographic planes of the silicon wafer. This allows cleavage of the chips automatically and with high positioning accuracy, and provides polished vertical facets with better quality than the obtained with other cleaving process, which eases the optical characterization of photonic devices. This method has been found to be particularly useful when cleaving small-sized chips, where manual cleaving is hard to perform; and also for polymeric waveguides, whose facets get damaged or even destroyed with polishing or manual cleaving processing. Influence of length of the grooved line and speed of processing is studied for a variety of silicon chips. An application for cleaving and characterizing sol–gel waveguides is presented. The total amount of light coupled is higher than when using any other procedure.
Resumo:
One of the key steps to achieve high efficiencies in amorphous/crystalline silicon photovoltaic structures is to design low-ohmic-resistance backcontacts with good passivation in the rear part of the cell. A well known approach to achieve this goal is to use laser-fired contact (LFC) processes in which a metal layer is fired through the dielectric to define good contacts with the semiconductor. However, and despite the fact that this approach has demonstrated to be extremely successful, there is still enough room for process improvement with an appropriate optimization. In this paper, a study focused on the optimal adjustment of the irradiation parameters to produce laser-fired contacts in a-Si:H/c-Si heterojunctionsolarcells is presented. We used samples consisting of crystalline-silicon (c-Si) wafers together with a passivation layer of intrinsic hydrogenated amorphous silicon (a-Si:H(i)) deposited by plasma-enhanced chemical deposition (PECVD). Then, an aluminum layer was evaporated on both sides, the thickness of this layer varied from 0.2 to 1 μm in order to identify the optimal amount of Al required to create an appropriate contact. A q-switched Nd:YVO4laser source, λ = 532 nm, was used to locally fire the aluminum through the thin a-Si:H(i)-layers to form the LFC. The effects of laser fluences were analyzed using a comprehensive morphological and electrical characterization.
Resumo:
In the Laser-Fired Contact (LFC) process, a laser beam fires a metallic layer through a dielectric passivating layer into the silicon wafer to form an electrical contact with the silicon bulk [1]. This laser technique is an interesting alternative for the fabrication of both laboratory and industrial scale high efficiency passivated emitter and rear cell (PERC). One of the principal characteristics of this promising technique is the capability to reduce the recombination losses at the rear surface in crystalline silicon solar cells. Therefore, it is crucial to optimize LFC because this process is one of the most promising concepts to produce rear side point contacts at process speeds compatible with the final industrial application. In that sense, this work investigates the optimization of LFC processing to improve the back contact in silicon solar cells using fully commercial solid state lasers with pulse width in the ns range, thus studying the influence of the wavelength using the three first harmonics (corresponding to wavelengths of 1064 nm, 532 nm and 355 nm). Previous studies of our group focused their attention in other processing parameters as laser fluence, number of pulses, passivating material [2, 3] thickness of the rear metallic contact [4], etc. In addition, the present work completes the parametric optimization by assessing the influence of the laser wavelength on the contact property. In particular we report results on the morphology and electrical behaviour of samples specifically designed to assess the quality of the process. In order to study the influence of the laser wavelength on the contact feature we used as figure of merit the specific contact resistance. In all processes the best results have been obtained using green (532 nm) and UV (355 nm), with excellent values for this magnitude far below 1 mΩcm2.
Resumo:
Laser material processing is being extensively used in photovoltaic applications for both the fabrication of thin film modules and the enhancement of the crystalline silicon solar cells. The two temperature model for thermal diffusion was numerically solved in this paper. Laser pulses of 1064, 532 or 248 nm with duration of 35, 26 or 10 ns were considered as the thermal source leading to the material ablation. Considering high irradiance levels (108–109 W cm−2), a total absorption of the energy during the ablation process was assumed in the model. The materials analysed in the simulation were aluminium (Al) and silver (Ag), which are commonly used as metallic electrodes in photovoltaic devices. Moreover, thermal diffusion was also simulated for crystalline silicon (c-Si). A similar trend of temperature as a function of depth and time was found for both metals and c-Si regardless of the employed wavelength. For each material, the ablation depth dependence on laser pulse parameters was determined by means of an ablation criterion. Thus, after the laser pulse, the maximum depth for which the total energy stored in the material is equal to the vaporisation enthalpy was considered as the ablation depth. For all cases, the ablation depth increased with the laser pulse fluence and did not exhibit a clear correlation with the radiation wavelength. Finally, the experimental validation of the simulation results was carried out and the ability of the model with the initial hypothesis of total energy absorption to closely fit experimental results was confirmed.
Resumo:
The influence of nanosecond laser pulses applied by laser shock peening without absorbent coating (LSPwC) with a Q-switched Nd:YAG laser operating at a wavelength of λ = 1064 nm on 6082-T651 Al alloy has been investigated. The first portion of the present study assesses laser shock peening effect at two pulse densities on three-dimensional (3D) surface topography characteristics. In the second part of the study, the peening effect on surface texture orientation and micro-structure modification, i.e. the effect of surface craters due to plasma and shock waves, were investigated in both longitudinal (L) and transverse (T) directions of the laser-beam movement. In the final portion of the study, the changes of mechanical properties were evaluated with a residual stress profile and Vickers micro-hardness through depth variation in the near surface layer, whereas factorial design with a response surface methodology (RSM) was applied. The surface topographic and micro-structural effect of laser shock peening were characterised with optical microscopy, InfiniteFocus® microscopy and scanning electron microscopy (SEM). Residual stress evaluation based on a hole-drilling integral method confirmed higher compression at the near surface layer (33 μm) in the transverse direction (σmin) of laser-beam movement, i.e. − 407 ± 81 MPa and − 346 ± 124 MPa, after 900 and 2500 pulses/cm2, respectively. Moreover, RSM analysis of micro-hardness through depth distribution confirmed an increase at both pulse densities, whereas LSPwC-generated shock waves showed the impact effect of up to 800 μm below the surface. Furthermore, ANOVA results confirmed the insignificant influence of LSPwC treatment direction on micro-hardness distribution indicating essentially homogeneous conditions, in both L and T directions.
Resumo:
Outline: • Introduction • Fundamental Physics of the Laser-Plasma Interaction in Laser Shock Processing • Theoretical/Computational Model Description • Some Results. Analysis of Interaction Parameters • Experimental Validation. Diagnosis Setup • Discussion and Outlook
Resumo:
The present work aims to assess Laser-Induced Plasma Spectrometry (LIPS) as a tool for the characterization of photovoltaic materials. Despite being a well-established technique with applications to many scientific and industrial fields, so far LIPS is little known to the photovoltaic scientific community. The technique allows the rapid characterization of layered samples without sample preparation, in open atmosphere and in real time. In this paper, we assess LIPS ability for the determination of elements that are difficult to analyze by other broadly used techniques, or for producing analytical information from very low-concentration elements. The results of the LIPS characterization of two different samples are presented: 1) a 90 nm, Al-doped ZnO layer deposited on a Si substrate by RF sputtering and 2) a Te-doped GaInP layer grown on GaAs by Metalorganic Vapor Phase Epitaxy. For both cases, the depth profile of the constituent and dopant elements is reported along with details of the experimental setup and the optimization of key parameters. It is remarkable that the longest time of analysis was ∼10 s, what, in conjunction with the other characteristics mentioned, makes of LIPS an appealing technique for rapid screening or quality control whether at the lab or at the production line.
Resumo:
We present improved experimental transition probabilities for the optical Ca I 4s4p-4s4d and 4s4p-4p2multiplets. The values were determined with an absolute uncertainty of 10%. Transition probabilities have been determined by the branching ratios from the measurement of relative line intensities emitted by laser-induced plasma (LIP). The line intensities were obtained with the target (leadcalcium) placed in argon atmosphere at 6 Torr, recorded at a 2.5 µs delay from the laser pulse, which provides appropriate measurement conditions, and analysed between 350.0 and 550.0 nm. They are measured when the plasma reaches local thermodynamic equilibrium (LTE). The plasma is characterized by electron temperature (T) of 11400 K and an electron number density (Ne) of 1.1 x 1016 cm-3. The influence self-absorption has been estimated for every line, and plasma homogeneity has been checked. The values obtained were compared with previous experimental values in the literature. The method for measurement of transition probabilities using laser-induced plasma as spectroscopic source has been checked.
Resumo:
When aqueous suspensions of gold nanorods are irradiated with a pulsing laser (808 nm), pressure waves appear even at low frequencies (pulse repetition rate of 25 kHz). We found that the pressure wave amplitude depends on the dynamics of the phenomenon. For fixed concentration and average laser current intensity, the amplitude of the pressure waves shows a trend of increasing with the pulse slope and the pulse maximum amplitude.We postulate that the detected ultrasonic pressure waves are a sort of shock waves that would be generated at the beginning of each pulse, because the pressure wave amplitude would be the result of the positive interference of all the individual shock waves.
Resumo:
Direct optical modulation at 2.5 Gb/s with amplitude of more than 0.5 W has been demonstrated in single longitudinal mode distributed Bragg reflector tapered lasers emitting at 1060 nm with separated injection of the ridge waveguide and tapered sections. The modulating signal of ~110 mA peak to peak was applied to the ridge waveguide section, yielding a high modulation efficiency of ~5 W/A. The large-signal frequency response of the experimental set-up was limited by the bandwidth of the electrical amplifier rather than by the internal dynamics of the laser, indicating that higher bit rates could be achieved with improved driving electronics.
Resumo:
We demonstrate the capability of a laser micromachining workstation for cost-effective manufacturing of a variety of microfluidic devices, including SU-8 microchannels on silicon wafers and 3D complex structures made on polyimide Kapton® or poly carbonate (PC). The workstation combines a KrF excimer laser at 248 nm and a Nd3+:YVO4 DPSS with a frequency tripled at 355 nm with a lens magnification 10X, both lasers working at a pulsed regime with nanoseconds (ns) pulse duration. Workstation also includes a high-resolution motorized XYZ-tilt axis (~ 1 um / axis) and a Through The Lens (TTL) imaging system for a high accurate positioning over a 120 x 120 mm working area. We have surveyed different fabrication techniques: direct writing lithography,mask manufacturing for contact lithography and polymer laser ablation for complex 3D devices, achieving width channels down to 13μ m on 50μ m SU-8 thickness using direct writing lithography, and width channels of 40 μm for polyimide on SiO2 plate. Finally, we have tested the use of some devices for capillary chips measuring the flow speed for liquids with different viscosities. As a result, we have characterized the presence of liquid in the channel by interferometric microscopy.
Resumo:
In the framework of the third generation of photovoltaic devices, the intermediate band solar cell is one of the possible candidates to reach higher efficiencies with a lower processing cost. In this work, we introduce a novel processing method based on a double ion implantation and, subsequently, a pulsed laser melting (PLM) process to obtain thicker layers of Ti supersaturated Si. We perform ab initio theoretical calculations of Si impurified with Ti showing that Ti in Si is a good candidate to theoretically form an intermediate band material in the Ti supersaturated Si. From time-of-flight secondary ion mass spectroscopy measurements, we confirm that we have obtained a Ti implanted and PLM thicker layer of 135 nm. Transmission electron microscopy reveals a single crystalline structure whilst the electrical characterization confirms the transport properties of an intermediate band material/Si substrate junction. High subbandgap absorption has been measured, obtaining an approximate value of 104 cm−1 in the photons energy range from 1.1 to 0.6 eV.
Resumo:
The main objective of this work is to adapt the Laser Induced Forward Techniques (LIFT), a well- known laser direct writing technique for material transfer, to define metallic contacts (fingers and busbars) onto c-Si cells. The silver paste (with viscosity around 30-50 kcPs) is applied over a glass substrate using a coater. The thickness of the paste can be control changing the deposit parameters. The glass with the silver paste is set at a controlled gap over the c-Si cell. A solid state pulsed laser (532 nm) is focused at the glass/silver interface producing a droplet of silver that it is transferred to the c-Si cell. A scanner is used to print lines. The process parameters (silver paste thickness, gap and laser parameters -spot size, pulse energy and overlapping of pulses) are modified and the morphology of the lines is studied using confocal microscopy. Long lines are printed and the uniformity (in thickness and height) is studied. Some examples of metallization of larger areas (up to 10 cm x 10 cm) are presented.
Resumo:
In this work we have realized plasma diagnosis produced by Laser (LPP), by means of emission spectroscopy in a Laser Shock Processing (LSP). The LSP has been proposed as an alternative technology, competitive with classical surface treatments. The ionic species present in the plasma together with electron density and its temperature provide significant indicators of the degree of surface effect of the treated material. In order to analyze these indicators, we have realized spectroscopic studies of optical emission in the laser-generated plasmas in different situations. We have worked focusing on an aluminum sample (Al2024) in air and/or in LSP conditions (water flow) a Q-switched laser of Nd:YAG (λ = 1.06 μm, 10 ns of pulse duration, running at 10 Hz repetition rate). The pulse energy was set at 2,5 J per pulse. The electron density has been measured using, in every case, the Stark broadening of H Balmer α line (656.27 nm). In the case of the air, this measure has been contrasted with the value obtained with the line of 281.62 nm of Al II. Special attention has been paid to the self-absorption of the spectral lines used. The measures were realized with different delay times after the pulse of the laser (1–8 μs) and with a time window of 1 μs. In LSP the electron density obtained was between 1017 cm−3 for the shortest delays (4–6 μs), and 1016 cm−3 for the greatest delays (7,8 μs).