19 resultados para NEURONAL GAIN
em Universidad Politécnica de Madrid
Resumo:
The purpose of this work is to propose a structure for simulating power systems using behavioral models of nonlinear DC to DC converters implemented through a look-up table of gains. This structure is specially designed for converters whose output impedance depends on the load current level, e.g. quasi-resonant converters. The proposed model is a generic one whose parameters can be obtained by direct measuring the transient response at different operating points. It also includes optional functionalities for modeling converters with current limitation and current sharing in paralleling characteristics. The pusposed structured also allows including aditional characteristics of the DC to DC converter as the efficency as a function of the input voltage and the output current or overvoltage and undervoltage protections. In addition, this proposed model is valid for overdamped and underdamped situations.
Resumo:
The most ubiquitous neuron in the cerebral cortex, the pyramidal cell, is characterized by markedly different dendritic structure among different cortical areas. The complex pyramidal cell phenotype in granular prefrontal cortex (gPFC) of higher primates endows specific biophysical properties and patterns of connectivity, which differ from those in other cortical regions. However, within the gPFC, data have been sampled from only a select few cortical areas. The gPFC of species such as human and macaque monkey includes more than 10 cortical areas. It remains unknown as to what degree pyramidal cell structure may vary among these cortical areas. Here we undertook a survey of pyramidal cells in the dorsolateral, medial, and orbital gPFC of cercopithecid primates. We found marked heterogeneity in pyramidal cell structure within and between these regions. Moreover, trends for gradients in neuronal complexity varied among species. As the structure of neurons determines their computational abilities, memory storage capacity and connectivity, we propose that these specializations in the pyramidal cell phenotype are an important determinant of species-specific executive cortical functions in primates.
Resumo:
La aparición de la terapia antirretroviral supuso un punto de inflexión en el tratamiento de las personas infectadas por el VIH. La selección de los fármacos es vital para poder controlar la enfermedad y asegurar la supervivencia de los pacientes. Son muchos los factores que hay que tener en consideración a la hora de efectuar dicha elección. Especialmente relevante es la posible resistencia del virus a uno o varios fármacos, resistencia generada por el propio tratamiento administrado y que anulará el efecto de las drogas. Esto nos da una idea de la importancia de disponer de técnicas de análisis e interpretación de las resistencias que cada paciente ha desarrollado. Este trabajo describe las diferentes técnicas que están siendo utilizadas para abordar el problema y presenta el desarrollo de un algoritmo para la detección de resistencias, aplicado al análisis de resistencias a un fármaco inhibidor de la proteasa.
Resumo:
We propose a pulse shaping and shortening technique for pulses generated from gain switched single mode semiconductor lasers, based on a Mach Zehnder interferometer with variable delay. The spectral and temporal characteristics of the pulses obtained with the proposed technique are investigated with numerical simulations. Experiments are performed with a Distributed Feedback laser and a Vertical Cavity Surface Emitting Laser, emitting at 1.5 µm, obtaining pulse duration reduction of 25-30%. The main asset of the proposed technique is that it can be applied to different devices and pulses, taking advantage of the flexibility of the gain switching technique.
Resumo:
Abstract. This paper describes a new and original method for designing oscillators based on the Normalized Determinant Function (NDF) and Return Relations (RRT)- Firstly, a review of the loop-gain method will be performed. The loop-gain method pros, cons and some examples for exploring wrong solutions provided by this method will be shown. This method produces in some cases wrong solutions because some necessary conditions have not been fulfilled. The required necessary conditions to assure a right solution will be described. The necessity of using the NDF or the Transpose Return Relations (RRT), which are related with the True Loop-Gain, to test the additional conditions will be demonstrated. To conclude this paper, the steps for oscillator design and analysis, using the proposed NDF/RRj method, will be presented. The loop-gain wrong solutions will be compared with the NDF/RRj and the accuracy of this method to estimate the oscillation frequency and QL will be demonstrated. Some additional examples of plane reference oscillators (Z/Y/T), will be added and they will be analyzed with the new NDF/RRj proposed method, even these oscillators cannot be analyzed using the classic loop gain method.
Resumo:
Down syndrome (DS) is the most frequent genetic cause of mental retardation. Cognitive dysfunction in these patients is correlated with reduced dendritic branching and complexity, along with fewer spines of abnormal shape that characterize the cortical neuronal profile of DS. DS phenotypes are caused by the disruptive effect of specific trisomic genes. Here, we report that overexpression of dual-specificity tyrosine phosphorylation-regulated kinase 1A, DYRK1A, is sufficient to produce the dendritic alterations observed in DS patients. Engineered changes in Dyrk1A gene dosage in vivo strongly alter the postnatal dendritic arborization processes with a similar progression than in humans. In cultured mammalian cortical neurons, we determined a reduction of neurite outgrowth and synaptogenesis. The mechanism underlying neurite dysgenesia involves changes in the dynamic reorganization of the cytoskeleton.
Resumo:
We present an analytical model for studying optical bistability in semiconductor lasers that exhibit a logarithmic dependence of the optical gain on carrier concentration. Model results are shown for a Fabry–Pérot quantum-well laser and compared with the predictions of a commercial computer-aided design (CAD) software tool.
Resumo:
A method to study some neuronal functions, based on the use of the Feynman diagrams, employed in many-body theory, is reported. An equation obtained from the neuron cable theory is the basis for the method. The Green's function for this equation is obtained under some simple boundary conditions. An excitatory signal, with different conditions concerning high and pulse duration, is employed as input signal. Different responses have been obtained
Resumo:
Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.
Resumo:
Animal models and human functional imaging data implicate the dopamine system in mediating enhanced encoding of novel stimuli into human memory. A separate line of investigation suggests an association between a functional polymorphism in the promoter region for the human dopamine 4 receptor gene (DRD4) and sensitivity to novelty. We demonstrate, in two independent samples, that the -521Cmayor queT DRD4 promoter polymorphism determines the magnitude of human memory enhancement for contextually novel, perceptual oddball stimuli in an allele dose-dependent manner. The genotype-dependent memory enhancement conferred by the C allele is associated with increased neuronal responses during successful encoding of perceptual oddballs in the ventral striatum, an effect which is again allele dose-dependent. Furthermore, with repeated presentations of oddball stimuli, this memory advantage decreases, an effect mirrored by adaptation of activation in the hippocampus and substantia nigra/ventral tegmental area in C carriers only. Thus, a dynamic modulation of human memory enhancement for perceptually salient stimuli is associated with activation of a dopaminergic-hippocampal system, which is critically dependent on a functional polymorphism in the DRD4 promoter region.
Resumo:
We analyze the gain-switching dynamics of two-section tapered lasers by means of a simplified three-rate-equation model. The goal is to improve the understanding of the underlying physics and to optimize the device geometry to achieve high power short duration optical pulses.
Resumo:
La ganancia de peso en el embarazo puede prevenirse mediante un programa de ejercicio físico.
Resumo:
In this paper, we present an algorithm to create 3D segmentations of neuronal cells from stacks of previously segmented 2D images. The idea behind this proposal is to provide a general method to reconstruct 3D structures from 2D stacks, regardless of how these 2D stacks have been obtained. The algorithm not only reuses the information obtained in the 2D segmentation, but also attempts to correct some typical mistakes made by the 2D segmentation algorithms (for example, under segmentation of tightly-coupled clusters of cells). We have tested our algorithm in a real scenario?the segmentation of the neuronal nuclei in different layers of the rat cerebral cortex. Several representative images from different layers of the cerebral cortex have been considered and several 2D segmentation algorithms have been compared. Furthermore, the algorithm has also been compared with the traditional 3D Watershed algorithm and the results obtained here show better performance in terms of correctly identified neuronal nuclei.
Resumo:
The objective of the current work is to present the results of several numerical simulations of pulsatile blood flow in healthy and diseased arteries and compare with clinical expectations. Different realistic and physiological aspects such as blood flow interaction with arterial walls, effect of heart movement, cardiovascular autoregulation, arterial walls' hyperelasticity and cardiovascular disorders have been incorporated in the models thanks to a direct coupling of Abaqus and STAR-CCM+. Comparisons of implicit and explicit coupling methods in cardiovascular simulations have been discussed. An in-house methodology combined with explicit FSI coupling has reduced considerably calculation time while the simulations stay realistic and reliable for clinicians
Resumo:
We propose the use of a polarization based interferometer with variable transfer function for the generation of temporally flat top pulses from gain switched single mode semiconductor lasers. The main advantage of the presented technique is its flexibility in terms of input pulse characteristics, as pulse duration, spectral bandwidth and operating wavelength. Theoretical predictions and experimental demonstrations are presented and the proposed technique is applied to two different semiconductor laser sources emitting in the 1550 nm region. Flat top pulses are successfully obtained with input seed pulses with duration ranging from 40 ps to 100 ps.