5 resultados para Mus musculus
em Universidad Politécnica de Madrid
Resumo:
A total of 200 (Landrace3Large White dam3Pietrain3Large White sire) gilts of 5063 days of age (23.361.47 kg BW) were used to investigate the effects of castration (intact gilt, IG v. castrated gilt, CG) and slaughter weight (SW; 106 v. 122 kg BW) on productive performance, carcass and meat quality. Four treatments were arranged factorially and five replicates of 10 pigs each per treatment. Half of the gilts were ovariectomized at 58 days of age (8 days after the beginning of the trial at 29.861.64 kg BW), whereas the other half remained intact. The pigs were slaughtered at 106 or 122 kg BW. Meat samples were taken at Musculus longissimus thoracis at the level of the last rib and subcutaneous fat samples were taken at the tail insertion. For the entire experimental period, CG had higher ( P,0.05) BW gain and higher ( P,0.001) backfat and Musculus gluteus medius fat thickness than IG. However, IG had higher ( P,0.05) loin and trimmed primal cut yields than CG. Meat quality was similar for IG and CG but the proportion of linoleic acid in subcutaneous fat was higher ( P,0.001) for IG. Pigs slaughtered at 122 kg BW had higher ( P,0.001) feed intake and poorer feed efficiency than pigs slaughtered at 106 kg BW. An increase in SW improved ( P,0.001) carcass yield but decreased ( P,0.05) trimmed primal cut yield. Meat from pigs slaughtered at the heavier BW was redder (a*; P,0.001) and had more ( P,0.01) intramuscular fat and less thawing ( P,0.05) and cooking ( P,0.10) loss than meat from pigs slaughtered at the lighter BW. In addition, pigs slaughtered at 122 kg BW had less ( P,0.01) linoleic acid content in subcutaneous fat than pigs slaughtered at 106 kg BW. Castration of gilts and slaughtering at heavier BW are useful practices for the production of heavy pigs destined to the dry-cured industry in which a certain amount of fat in the carcass is required. In contrast, when the carcasses are destined to fresh meat production, IG slaughtered at 106 kg BW is a more efficient alternative.
Resumo:
There are many the requirements that modern power converters should fulfill. Most of the applications where these converters are used, demand smaller converters with high efficiency, improved power density and a fast dynamic response. For instance, loads like microprocessors demand aggressive current steps with very high slew rates (100A/mus and higher); besides, during these load steps, the supply voltage of the microprocessor should be kept within tight limits in order to ensure its correct performance. The accomplishment of these requirements is not an easy task; complex solutions like advanced topologies - such as multiphase converters- as well as advanced control strategies are often needed. Besides, it is also necessary to operate the converter at high switching frequencies and to use capacitors with high capacitance and low ESR. Improving the dynamic response of power converters does not rely only on the control strategy but also the power topology should be suited to enable a fast dynamic response. Moreover, in later years, a fast dynamic response does not only mean accomplishing fast load steps but output voltage steps are gaining importance as well. At least, two applications that require fast voltage changes can be named: Low power microprocessors. In these devices, the voltage supply is changed according to the workload and the operating frequency of the microprocessor is changed at the same time. An important reduction in voltage dependent losses can be achieved with such changes. This technique is known as Dynamic Voltage Scaling (DVS). Another application where important energy savings can be achieved by means of changing the supply voltage are Radio Frequency Power Amplifiers. For example, RF architectures based on ‘Envelope Tracking’ and ‘Envelope Elimination and Restoration’ techniques can take advantage of voltage supply modulation and accomplish important energy savings in the power amplifier. However, in order to achieve these efficiency improvements, a power converter with high efficiency and high enough bandwidth (hundreds of kHz or even tens of MHz) is necessary in order to ensure an adequate supply voltage. The main objective of this Thesis is to improve the dynamic response of DC-DC converters from the point of view of the power topology. And the term dynamic response refers both to the load steps and the voltage steps; it is also interesting to modulate the output voltage of the converter with a specific bandwidth. In order to accomplish this, the question of what is it that limits the dynamic response of power converters should be answered. Analyzing this question leads to the conclusion that the dynamic response is limited by the power topology and specifically, by the filter inductance of the converter which is found in series between the input and the output of the converter. The series inductance is the one that determines the gain of the converter and provides the regulation capability. Although the energy stored in the filter inductance enables the regulation and the capability of filtering the output voltage, it imposes a limitation which is the concern of this Thesis. The series inductance stores energy and prevents the current from changing in a fast way, limiting the slew rate of the current through this inductor. Different solutions are proposed in the literature in order to reduce the limit imposed by the filter inductor. Many publications proposing new topologies and improvements to known topologies can be found in the literature. Also, complex control strategies are proposed with the objective of improving the dynamic response in power converters. In the proposed topologies, the energy stored in the series inductor is reduced; examples of these topologies are Multiphase converters, Buck converter operating at very high frequency or adding a low impedance path in parallel with the series inductance. Control techniques proposed in the literature, focus on adjusting the output voltage as fast as allowed by the power stage; examples of these control techniques are: hysteresis control, V 2 control, and minimum time control. In some of the proposed topologies, a reduction in the value of the series inductance is achieved and with this, the energy stored in this magnetic element is reduced; less stored energy means a faster dynamic response. However, in some cases (as in the high frequency Buck converter), the dynamic response is improved at the cost of worsening the efficiency. In this Thesis, a drastic solution is proposed: to completely eliminate the series inductance of the converter. This is a more radical solution when compared to those proposed in the literature. If the series inductance is eliminated, the regulation capability of the converter is limited which can make it difficult to use the topology in one-converter solutions; however, this topology is suitable for power architectures where the energy conversion is done by more than one converter. When the series inductor is eliminated from the converter, the current slew rate is no longer limited and it can be said that the dynamic response of the converter is independent from the switching frequency. This is the main advantage of eliminating the series inductor. The main objective, is to propose an energy conversion strategy that is done without series inductance. Without series inductance, no energy is stored between the input and the output of the converter and the dynamic response would be instantaneous if all the devices were ideal. If the energy transfer from the input to the output of the converter is done instantaneously when a load step occurs, conceptually it would not be necessary to store energy at the output of the converter (no output capacitor COUT would be needed) and if the input source is ideal, the input capacitor CIN would not be necessary. This last feature (no CIN with ideal VIN) is common to all power converters. However, when the concept is actually implemented, parasitic inductances such as leakage inductance of the transformer and the parasitic inductance of the PCB, cannot be avoided because they are inherent to the implementation of the converter. These parasitic elements do not affect significantly to the proposed concept. In this Thesis, it is proposed to operate the converter without series inductance in order to improve the dynamic response of the converter; however, on the other side, the continuous regulation capability of the converter is lost. It is said continuous because, as it will be explained throughout the Thesis, it is indeed possible to achieve discrete regulation; a converter without filter inductance and without energy stored in the magnetic element, is capable to achieve a limited number of output voltages. The changes between these output voltage levels are achieved in a fast way. The proposed energy conversion strategy is implemented by means of a multiphase converter where the coupling of the phases is done by discrete two-winding transformers instead of coupledinductors since transformers are, ideally, no energy storing elements. This idea is the main contribution of this Thesis. The feasibility of this energy conversion strategy is first analyzed and then verified by simulation and by the implementation of experimental prototypes. Once the strategy is proved valid, different options to implement the magnetic structure are analyzed. Three different discrete transformer arrangements are studied and implemented. A converter based on this energy conversion strategy would be designed with a different approach than the one used to design classic converters since an additional design degree of freedom is available. The switching frequency can be chosen according to the design specifications without penalizing the dynamic response or the efficiency. Low operating frequencies can be chosen in order to favor the efficiency; on the other hand, high operating frequencies (MHz) can be chosen in order to favor the size of the converter. For this reason, a particular design procedure is proposed for the ‘inductorless’ conversion strategy. Finally, applications where the features of the proposed conversion strategy (high efficiency with fast dynamic response) are advantageus, are proposed. For example, in two-stage power architectures where a high efficiency converter is needed as the first stage and there is a second stage that provides the fine regulation. Another example are RF power amplifiers where the voltage is modulated following an envelope reference in order to save power; in this application, a high efficiency converter, capable of achieving fast voltage steps is required. The main contributions of this Thesis are the following: The proposal of a conversion strategy that is done, ideally, without storing energy in the magnetic element. The validation and the implementation of the proposed energy conversion strategy. The study of different magnetic structures based on discrete transformers for the implementation of the proposed energy conversion strategy. To elaborate and validate a design procedure. To identify and validate applications for the proposed energy conversion strategy. It is important to remark that this work is done in collaboration with Intel. The particular features of the proposed conversion strategy enable the possibility of solving the problems related to microprocessor powering in a different way. For example, the high efficiency achieved with the proposed conversion strategy enables it as a good candidate to be used for power conditioning, as a first stage in a two-stage power architecture for powering microprocessors.
Resumo:
ED bare theters are best systems to deorbit S/C at end of service. For near polar orbits, usual tethers kept vertical by the gravity gradient, yield too weak magnetic drag. Here we propose keeping tethers perpendicular to the orbital plane. they mus be rigid and short for structural reasons, requiring power supply like Ion thrusters. terher tube-booms that can be rolled up on a drum would lie on each side of the S/C. One boom, carying in idle Hollow Cathode, collects electrons; the opposite boom's HC ejects electrons.
Resumo:
El fútbol es un deporte con una elevada incidencia de lesiones. Durante la tempo- rada 2008-2009 se realizó un estudio descriptivo con el objetivo de conocer la etiología lesional en el fútbol profesiones español y el número de días de baja que produce cada tipo de lesión en esta práctica deportiva. Para el registro de la información se utilizó el cuestionario REINLE, previamente validado. Se registró la exposición a entrenamiento y competición en un total de 244.835 h de práctica, produciéndose un total de 2.184 lesiones, lo que supuso una incidencia lesional de 8,94 lesiones por cada 1.000 h de exposición. Cada equipo tuvo 80,89 lesiones y 909 días de baja por temporada. En función de la tipología, obtuvimos que las roturas mus- culares provocaron mayores periodos de baja (267,2 días de baja por equipo y temporada), seguidas de las lesiones de carácter ligamentoso (182,1 días de baja por equipo y temporada). El músculo más lesionado fue el bíceps femoral (3,3 lesiones por temporada y equipo); por otro lado, el músculo recto femoral fue el que más días de baja provocó (76,6 días por tempo- rada y equipo). A nivel ligamentoso, el ligamento lateral externo del tobillo fue la estructura más afectada, con una frecuencia de 3,7 lesiones por equipo y temporada, mientras que el ligamento lateral interno de la rodilla acumuló más días de baja (43,7 días por temporada y equipo). Podemos concluir que el fútbol es un deporte con una elevada incidencia lesional que provoca gran cantidad de días de baja a lo largo de una temporada.
Resumo:
La usabilidad es uno de los aspectos más importantes de la calidad del software para sistemas software interactivos. A pesar de ello, la Ingeniería del Software (IS) se ha centrado históricamente en problemas de funcionalidad y de persistencia, relegando a un segundo plano aspectos de la interacción con el usuario, y más concretamente, de la usabilidad. Ha sido principalmente la comunidad Interacción Persona-Ordenador (IPO) la que ha propuesto recomendaciones para mejorar la usabilidad. En estudios recientes se ha encontrado una relación entre algunas de las recomendaciones de usabilidad propuestas por la comunidad IPO y la funcionalidad de un sistema software. Estas recomendaciones se conocen como Características Funcionales de Usabilidad (CFU), divididas en subtipos más especializados llamados Mecanismos de Usabilidad (MU). Estos estudios han propuesto unas Guías para la Educción de Requisitos por cada mecanismo de usabilidad (GERMU). Posteriormente, se continúan los estudios y con base al repositorio de conocimiento suministrado por las GERMUs, se proponen diseños de más bajo nivel e implementación que facilite la incorporación de un MU en un sistema software. Los resultados se formalizaron en lo que se llamo Patrón de Programación de Usabilidad (PPU). El presente trabajo de investigación se centra en evaluar el impacto debido a la incorporación de mecanismos de usabilidad en el desarrollo de un sistema software. Concretamente el MU Abortar Operación (MU AO), el MU Retroalimentación del Progreso (MU RP) y MU Preferencias (MU P), tanto a nivel de requisitos como a nivel de implementación. Para satisfacer este objetivo, en esta investigación se aborda el desarrollo de un sistema software desde la actividad de educción de requisitos hasta la implementación. Para la actividad de requisitos se hace uso de la GERMU AO, GERMU RP y la GERMU P. La construcción del sistema sigue el modelo incremental. En cada incremento se construye un conjunto de casos de uso junto con uno o varios MUs. Para incorporar cada MU en implementación, se hace uso del PPU Abortar Operación (PPU AO), PPU Retroalimentación del Progreso (PPU RP) y PPU Preferencias (PPU P). En el primer incremento se incorpora el PPU AO, en el segundo el PPU RP, en el tercer incremento PPU P, y en el último incremento, se añaden los restantes casos de uso junto con los tres PPUs al sistema. Tanto en la actividad de requisitos, como en la construcción de cada incremento se evalúa el impacto de la incorporación de tales PPUs. Cada evaluación proporciona datos que pueden dar una estimación del esfuerzo requerido para incorporar cada PPU en las distintas actividades del desarrollo del sistema. Como resultado de la experiencia del uso de los diferentes artefactos relacionados en esta investigación se obtienen propuestas de mejoras para los PPUs, y adicionalmente para las GERMUs.