31 resultados para Multiobjective Genetic Algorithm
em Universidad Politécnica de Madrid
Resumo:
The data acquired by Remote Sensing systems allow obtaining thematic maps of the earth's surface, by means of the registered image classification. This implies the identification and categorization of all pixels into land cover classes. Traditionally, methods based on statistical parameters have been widely used, although they show some disadvantages. Nevertheless, some authors indicate that those methods based on artificial intelligence, may be a good alternative. Thus, fuzzy classifiers, which are based on Fuzzy Logic, include additional information in the classification process through based-rule systems. In this work, we propose the use of a genetic algorithm (GA) to select the optimal and minimum set of fuzzy rules to classify remotely sensed images. Input information of GA has been obtained through the training space determined by two uncorrelated spectral bands (2D scatter diagrams), which has been irregularly divided by five linguistic terms defined in each band. The proposed methodology has been applied to Landsat-TM images and it has showed that this set of rules provides a higher accuracy level in the classification process
Resumo:
An aerodynamic optimization of the train aerodynamic characteristics in term of front wind action sensitivity is carried out in this paper. In particular, a genetic algorithm (GA) is used to perform a shape optimization study of a high-speed train nose. The nose is parametrically defined via Bézier Curves, including a wider range of geometries in the design space as possible optimal solutions. Using a GA, the main disadvantage to deal with is the large number of evaluations need before finding such optimal. Here it is proposed the use of metamodels to replace Navier-Stokes solver. Among all the posibilities, Rsponse Surface Models and Artificial Neural Networks (ANN) are considered. Best results of prediction and generalization are obtained with ANN and those are applied in GA code. The paper shows the feasibility of using GA in combination with ANN for this problem, and solutions achieved are included.
Resumo:
Determination of the soil coverage by crop residues after ploughing is a fundamental element of Conservation Agriculture. This paper presents the application of genetic algorithms employed during the fine tuning of the segmentation process of a digital image with the aim of automatically quantifying the residue coverage. In other words, the objective is to achieve a segmentation that would permit the discrimination of the texture of the residue so that the output of the segmentation process is a binary image in which residue zones are isolated from the rest. The RGB images used come from a sample of images in which sections of terrain were photographed with a conventional camera positioned in zenith orientation atop a tripod. The images were taken outdoors under uncontrolled lighting conditions. Up to 92% similarity was achieved between the images obtained by the segmentation process proposed in this paper and the templates made by an elaborate manual tracing process. In addition to the proposed segmentation procedure and the fine tuning procedure that was developed, a global quantification of the soil coverage by residues for the sampled area was achieved that differed by only 0.85% from the quantification obtained using template images. Moreover, the proposed method does not depend on the type of residue present in the image. The study was conducted at the experimental farm “El Encín” in Alcalá de Henares (Madrid, Spain).
Resumo:
This paper studies feature subset selection in classification using a multiobjective estimation of distribution algorithm. We consider six functions, namely area under ROC curve, sensitivity, specificity, precision, F1 measure and Brier score, for evaluation of feature subsets and as the objectives of the problem. One of the characteristics of these objective functions is the existence of noise in their values that should be appropriately handled during optimization. Our proposed algorithm consists of two major techniques which are specially designed for the feature subset selection problem. The first one is a solution ranking method based on interval values to handle the noise in the objectives of this problem. The second one is a model estimation method for learning a joint probabilistic model of objectives and variables which is used to generate new solutions and advance through the search space. To simplify model estimation, l1 regularized regression is used to select a subset of problem variables before model learning. The proposed algorithm is compared with a well-known ranking method for interval-valued objectives and a standard multiobjective genetic algorithm. Particularly, the effects of the two new techniques are experimentally investigated. The experimental results show that the proposed algorithm is able to obtain comparable or better performance on the tested datasets.
Resumo:
Este artículo propone un método para llevar a cabo la calibración de las familias de discontinuidades en macizos rocosos. We present a novel approach for calibration of stochastic discontinuity network parameters based on genetic algorithms (GAs). To validate the approach, examples of application of the method to cases with known parameters of the original Poisson discontinuity network are presented. Parameters of the model are encoded as chromosomes using a binary representation, and such chromosomes evolve as successive generations of a randomly generated initial population, subjected to GA operations of selection, crossover and mutation. Such back-calculated parameters are employed to make assessments about the inference capabilities of the model using different objective functions with different probabilities of crossover and mutation. Results show that the predictive capabilities of GAs significantly depend on the type of objective function considered; and they also show that the calibration capabilities of the genetic algorithm can be acceptable for practical engineering applications, since in most cases they can be expected to provide parameter estimates with relatively small errors for those parameters of the network (such as intensity and mean size of discontinuities) that have the strongest influence on many engineering applications.
Resumo:
An aerodynamic optimization of the ICE 2 high-speed train nose in term of front wind action sensitivity is carried out in this paper. The nose is parametrically defined by Be?zier Curves, and a three-dimensional representation of the nose is obtained using thirty one design variables. This implies a more complete parametrization, allowing the representation of a real model. In order to perform this study a genetic algorithm (GA) is used. Using a GA involves a large number of evaluations before finding such optimal. Hence it is proposed the use of metamodels or surrogate models to replace Navier-Stokes solver and speed up the optimization process. Adaptive sampling is considered to optimize surrogate model fitting and minimize computational cost when dealing with a very large number of design parameters. The paper introduces the feasi- bility of using GA in combination with metamodels for real high-speed train geometry optimization.
Resumo:
Heuristic methods are popular tools to find critical slip surfaces in slope stability analyses. A new genetic algorithm (GA) is proposed in this work that has a standard structure but a novel encoding and generation of individuals with custom-designed operators for mutation and crossover that produce kinematically feasible slip surfaces with a high probability. In addition, new indices to assess the efficiency of operators in their search for the minimum factor of safety (FS) are proposed. The proposed GA is applied to traditional benchmark examples from the literature, as well as to a new practical example. Results show that the proposed GA is reliable, flexible and robust: it provides good minimum FS estimates that are not very sensitive to the number of nodes and that are very similar for different replications
Resumo:
In recent years, there has been continuing interest in the participation of university research groups in space technology studies by means of their own microsatellites. The involvement in such projects has some inherent challenges, such as limited budget and facilities. Also, due to the fact that the main objective of these projects is for educational purposes, usually there are uncertainties regarding their in orbit mission and scientific payloads at the early phases of the project. On the other hand, there are predetermined limitations for their mass and volume budgets owing to the fact that most of them are launched as an auxiliary payload in which the launch cost is reduced considerably. The satellite structure subsystem is the one which is most affected by the launcher constraints. This can affect different aspects, including dimensions, strength and frequency requirements. In this paper, the main focus is on developing a structural design sizing tool containing not only the primary structures properties as variables but also the system level variables such as payload mass budget and satellite total mass and dimensions. This approach enables the design team to obtain better insight into the design in an extended design envelope. The structural design sizing tool is based on analytical structural design formulas and appropriate assumptions including both static and dynamic models of the satellite. Finally, a Genetic Algorithm (GA) multiobjective optimization is applied to the design space. The result is a Pareto-optimal based on two objectives, minimum satellite total mass and maximum payload mass budget, which gives a useful insight to the design team at the early phases of the design.
Resumo:
At present, all methods in Evolutionary Computation are bioinspired by the fundamental principles of neo-Darwinism, as well as by a vertical gene transfer. Virus transduction is one of the key mechanisms of horizontal gene propagation in microorganisms (e.g. bacteria). In the present paper, we model and simulate a transduction operator, exploring the possible role and usefulness of transduction in a genetic algorithm. The genetic algorithm including transduction has been named PETRI (abbreviation of Promoting Evolution Through Reiterated Infection). Our results showed how PETRI approaches higher fitness values as transduction probability comes close to 100%. The conclusion is that transduction improves the performance of a genetic algorithm, assuming a population divided among several sub-populations or ?bacterial colonies?.
Resumo:
Esta tesis se ha realizado en el contexto del proyecto UPMSat-2, que es un microsatélite diseñado, construido y operado por el Instituto Universitario de Microgravedad "Ignacio Da Riva" (IDR / UPM) de la Universidad Politécnica de Madrid. Aplicación de la metodología Ingeniería Concurrente (Concurrent Engineering: CE) en el marco de la aplicación de diseño multidisciplinar (Multidisciplinary Design Optimization: MDO) es uno de los principales objetivos del presente trabajo. En los últimos años, ha habido un interés continuo en la participación de los grupos de investigación de las universidades en los estudios de la tecnología espacial a través de sus propios microsatélites. La participación en este tipo de proyectos tiene algunos desafíos inherentes, tales como presupuestos y servicios limitados. Además, debido al hecho de que el objetivo principal de estos proyectos es fundamentalmente educativo, por lo general hay incertidumbres en cuanto a su misión en órbita y cargas útiles en las primeras fases del proyecto. Por otro lado, existen limitaciones predeterminadas para sus presupuestos de masa, volumen y energía, debido al hecho de que la mayoría de ellos están considerados como una carga útil auxiliar para el lanzamiento. De este modo, el costo de lanzamiento se reduce considerablemente. En este contexto, el subsistema estructural del satélite es uno de los más afectados por las restricciones que impone el lanzador. Esto puede afectar a diferentes aspectos, incluyendo las dimensiones, la resistencia y los requisitos de frecuencia. En la primera parte de esta tesis, la atención se centra en el desarrollo de una herramienta de diseño del subsistema estructural que evalúa, no sólo las propiedades de la estructura primaria como variables, sino también algunas variables de nivel de sistema del satélite, como la masa de la carga útil y la masa y las dimensiones extremas de satélite. Este enfoque permite que el equipo de diseño obtenga una mejor visión del diseño en un espacio de diseño extendido. La herramienta de diseño estructural se basa en las fórmulas y los supuestos apropiados, incluyendo los modelos estáticos y dinámicos del satélite. Un algoritmo genético (Genetic Algorithm: GA) se aplica al espacio de diseño para optimizaciones de objetivo único y también multiobjetivo. El resultado de la optimización multiobjetivo es un Pareto-optimal basado en dos objetivo, la masa total de satélites mínimo y el máximo presupuesto de masa de carga útil. Por otro lado, la aplicación de los microsatélites en misiones espaciales es de interés por su menor coste y tiempo de desarrollo. La gran necesidad de las aplicaciones de teledetección es un fuerte impulsor de su popularidad en este tipo de misiones espaciales. Las misiones de tele-observación por satélite son esenciales para la investigación de los recursos de la tierra y el medio ambiente. En estas misiones existen interrelaciones estrechas entre diferentes requisitos como la altitud orbital, tiempo de revisita, el ciclo de vida y la resolución. Además, todos estos requisitos puede afectar a toda las características de diseño. Durante los últimos años la aplicación de CE en las misiones espaciales ha demostrado una gran ventaja para llegar al diseño óptimo, teniendo en cuenta tanto el rendimiento y el costo del proyecto. Un ejemplo bien conocido de la aplicación de CE es la CDF (Facilidad Diseño Concurrente) de la ESA (Agencia Espacial Europea). Está claro que para los proyectos de microsatélites universitarios tener o desarrollar una instalación de este tipo parece estar más allá de las capacidades del proyecto. Sin embargo, la práctica de la CE a cualquier escala puede ser beneficiosa para los microsatélites universitarios también. En la segunda parte de esta tesis, la atención se centra en el desarrollo de una estructura de optimización de diseño multidisciplinar (Multidisciplinary Design Optimization: MDO) aplicable a la fase de diseño conceptual de microsatélites de teledetección. Este enfoque permite que el equipo de diseño conozca la interacción entre las diferentes variables de diseño. El esquema MDO presentado no sólo incluye variables de nivel de sistema, tales como la masa total del satélite y la potencia total, sino también los requisitos de la misión como la resolución y tiempo de revisita. El proceso de diseño de microsatélites se divide en tres disciplinas; a) diseño de órbita, b) diseño de carga útil y c) diseño de plataforma. En primer lugar, se calculan diferentes parámetros de misión para un rango práctico de órbitas helio-síncronas (sun-synchronous orbits: SS-Os). Luego, según los parámetros orbitales y los datos de un instrumento como referencia, se calcula la masa y la potencia de la carga útil. El diseño de la plataforma del satélite se estima a partir de los datos de la masa y potencia de los diferentes subsistemas utilizando relaciones empíricas de diseño. El diseño del subsistema de potencia se realiza teniendo en cuenta variables de diseño más detalladas, como el escenario de la misión y diferentes tipos de células solares y baterías. El escenario se selecciona, de modo de obtener una banda de cobertura sobre la superficie terrestre paralelo al Ecuador después de cada intervalo de revisita. Con el objetivo de evaluar las interrelaciones entre las diferentes variables en el espacio de diseño, todas las disciplinas de diseño mencionados se combinan en un código unificado. Por último, una forma básica de MDO se ajusta a la herramienta de diseño de sistema de satélite. La optimización del diseño se realiza por medio de un GA con el único objetivo de minimizar la masa total de microsatélite. Según los resultados obtenidos de la aplicación del MDO, existen diferentes puntos de diseños óptimos, pero con diferentes variables de misión. Este análisis demuestra la aplicabilidad de MDO para los estudios de ingeniería de sistema en la fase de diseño conceptual en este tipo de proyectos. La principal conclusión de esta tesis, es que el diseño clásico de los satélites que por lo general comienza con la definición de la misión y la carga útil no es necesariamente la mejor metodología para todos los proyectos de satélites. Un microsatélite universitario, es un ejemplo de este tipo de proyectos. Por eso, se han desarrollado un conjunto de herramientas de diseño para encarar los estudios de la fase inicial de diseño. Este conjunto de herramientas incluye diferentes disciplinas de diseño centrados en el subsistema estructural y teniendo en cuenta una carga útil desconocida a priori. Los resultados demuestran que la mínima masa total del satélite y la máxima masa disponible para una carga útil desconocida a priori, son objetivos conflictivos. En este contexto para encontrar un Pareto-optimal se ha aplicado una optimización multiobjetivo. Según los resultados se concluye que la selección de la masa total por satélite en el rango de 40-60 kg puede considerarse como óptima para un proyecto de microsatélites universitario con carga útil desconocida a priori. También la metodología CE se ha aplicado al proceso de diseño conceptual de microsatélites de teledetección. Los resultados de la aplicación del CE proporcionan una clara comprensión de la interacción entre los requisitos de diseño de sistemas de satélites, tales como la masa total del microsatélite y la potencia y los requisitos de la misión como la resolución y el tiempo de revisita. La aplicación de MDO se hace con la minimización de la masa total de microsatélite. Los resultados de la aplicación de MDO aclaran la relación clara entre los diferentes requisitos de diseño del sistema y de misión, así como que permiten seleccionar las líneas de base para el diseño óptimo con el objetivo seleccionado en las primeras fase de diseño. ABSTRACT This thesis is done in the context of UPMSat-2 project, which is a microsatellite under design and manufacturing at the Instituto Universitario de Microgravedad “Ignacio Da Riva” (IDR/UPM) of the Universidad Politécnica de Madrid. Application of Concurrent Engineering (CE) methodology in the framework of Multidisciplinary Design application (MDO) is one of the main objectives of the present work. In recent years, there has been continuing interest in the participation of university research groups in space technology studies by means of their own microsatellites. The involvement in such projects has some inherent challenges, such as limited budget and facilities. Also, due to the fact that the main objective of these projects is for educational purposes, usually there are uncertainties regarding their in orbit mission and scientific payloads at the early phases of the project. On the other hand, there are predetermined limitations for their mass and volume budgets owing to the fact that most of them are launched as an auxiliary payload in which the launch cost is reduced considerably. The satellite structure subsystem is the one which is most affected by the launcher constraints. This can affect different aspects, including dimensions, strength and frequency requirements. In the first part of this thesis, the main focus is on developing a structural design sizing tool containing not only the primary structures properties as variables but also the satellite system level variables such as payload mass budget and satellite total mass and dimensions. This approach enables the design team to obtain better insight into the design in an extended design envelope. The structural design sizing tool is based on the analytical structural design formulas and appropriate assumptions including both static and dynamic models of the satellite. A Genetic Algorithm (GA) is applied to the design space for both single and multiobejective optimizations. The result of the multiobjective optimization is a Pareto-optimal based on two objectives, minimum satellite total mass and maximum payload mass budget. On the other hand, the application of the microsatellites is of interest for their less cost and response time. The high need for the remote sensing applications is a strong driver of their popularity in space missions. The satellite remote sensing missions are essential for long term research around the condition of the earth resources and environment. In remote sensing missions there are tight interrelations between different requirements such as orbital altitude, revisit time, mission cycle life and spatial resolution. Also, all of these requirements can affect the whole design characteristics. During the last years application of the CE in the space missions has demonstrated a great advantage to reach the optimum design base lines considering both the performance and the cost of the project. A well-known example of CE application is ESA (European Space Agency) CDF (Concurrent Design Facility). It is clear that for the university-class microsatellite projects having or developing such a facility seems beyond the project capabilities. Nevertheless practicing CE at any scale can be beneficiary for the university-class microsatellite projects. In the second part of this thesis, the main focus is on developing a MDO framework applicable to the conceptual design phase of the remote sensing microsatellites. This approach enables the design team to evaluate the interaction between the different system design variables. The presented MDO framework contains not only the system level variables such as the satellite total mass and total power, but also the mission requirements like the spatial resolution and the revisit time. The microsatellite sizing process is divided into the three major design disciplines; a) orbit design, b) payload sizing and c) bus sizing. First, different mission parameters for a practical range of sun-synchronous orbits (SS-Os) are calculated. Then, according to the orbital parameters and a reference remote sensing instrument, mass and power of the payload are calculated. Satellite bus sizing is done based on mass and power calculation of the different subsystems using design estimation relationships. In the satellite bus sizing, the power subsystem design is realized by considering more detailed design variables including a mission scenario and different types of solar cells and batteries. The mission scenario is selected in order to obtain a coverage belt on the earth surface parallel to the earth equatorial after each revisit time. In order to evaluate the interrelations between the different variables inside the design space all the mentioned design disciplines are combined in a unified code. The integrated satellite system sizing tool developed in this section is considered as an application of the CE to the conceptual design of the remote sensing microsatellite projects. Finally, in order to apply the MDO methodology to the design problem, a basic MDO framework is adjusted to the developed satellite system design tool. Design optimization is done by means of a GA single objective algorithm with the objective function as minimizing the microsatellite total mass. According to the results of MDO application, there exist different optimum design points all with the minimum satellite total mass but with different mission variables. This output demonstrates the successful applicability of MDO approach for system engineering trade-off studies at the conceptual design phase of the design in such projects. The main conclusion of this thesis is that the classical design approach for the satellite design which usually starts with the mission and payload definition is not necessarily the best approach for all of the satellite projects. The university-class microsatellite is an example for such projects. Due to this fact an integrated satellite sizing tool including different design disciplines focusing on the structural subsystem and considering unknown payload is developed. According to the results the satellite total mass and available mass for the unknown payload are conflictive objectives. In order to find the Pareto-optimal a multiobjective GA optimization is conducted. Based on the optimization results it is concluded that selecting the satellite total mass in the range of 40-60 kg can be considered as an optimum approach for a university-class microsatellite project with unknown payload(s). Also, the CE methodology is applied to the remote sensing microsatellites conceptual design process. The results of CE application provide a clear understanding of the interaction between satellite system design requirements such as satellite total mass and power and the satellite mission variables such as revisit time and spatial resolution. The MDO application is done with the total mass minimization of a remote sensing satellite. The results from the MDO application clarify the unclear relationship between different system and mission design variables as well as the optimum design base lines according to the selected objective during the initial design phases.
Resumo:
The diversity of bibliometric indices today poses the challenge of exploiting the relationships among them. Our research uncovers the best core set of relevant indices for predicting other bibliometric indices. An added difficulty is to select the role of each variable, that is, which bibliometric indices are predictive variables and which are response variables. This results in a novel multioutput regression problem where the role of each variable (predictor or response) is unknown beforehand. We use Gaussian Bayesian networks to solve the this problem and discover multivariate relationships among bibliometric indices. These networks are learnt by a genetic algorithm that looks for the optimal models that best predict bibliometric data. Results show that the optimal induced Gaussian Bayesian networks corroborate previous relationships between several indices, but also suggest new, previously unreported interactions. An extended analysis of the best model illustrates that a set of 12 bibliometric indices can be accurately predicted using only a smaller predictive core subset composed of citations, g-index, q2-index, and hr-index. This research is performed using bibliometric data on Spanish full professors associated with the computer science area.
Resumo:
AnewRelativisticScreenedHydrogenicModel has been developed to calculate atomic data needed to compute the optical and thermodynamic properties of high energy density plasmas. The model is based on anewset of universal screeningconstants, including nlj-splitting that has been obtained by fitting to a large database of ionization potentials and excitation energies. This database was built with energies compiled from the National Institute of Standards and Technology (NIST) database of experimental atomic energy levels, and energies calculated with the Flexible Atomic Code (FAC). The screeningconstants have been computed up to the 5p3/2 subshell using a Genetic Algorithm technique with an objective function designed to minimize both the relative error and the maximum error. To select the best set of screeningconstants some additional physical criteria has been applied, which are based on the reproduction of the filling order of the shells and on obtaining the best ground state configuration. A statistical error analysis has been performed to test the model, which indicated that approximately 88% of the data lie within a ±10% error interval. We validate the model by comparing the results with ionization energies, transition energies, and wave functions computed using sophisticated self-consistent codes and experimental data.
Resumo:
A compact planar array with parasitic elements is studied to be used in MIMO systems. Classical compact arrays suffer from high coupling which makes correlation and matching efficiency to be worse. A proper matching network improves these lacks although its bandwidth is low and may increase the antenna size. The proposed antenna makes use of parasitic elements to improve both correlation and efficiency. A specific software based on MoM has been developed to analyze radiating structures with several feed points. The array is optimized through a Genetic Algorithm to determine parasitic elements position in order to fulfill different figures of merit. The proposed design provides the required correlation and matching efficiency to have a good performance over a significant bandwidth.
Resumo:
This paper proposes the EvoBANE system. EvoBANE automatically generates Bayesian networks for solving special-purpose problems. EvoBANE evolves a population of individuals that codify Bayesian networks until it finds near optimal individual that solves a given classification problem. EvoBANE has the flexibility to modify the constraints that condition the solution search space, self-adapting to the specifications of the problem to be solved. The system extends the GGEAS architecture. GGEAS is a general-purpose grammar-guided evolutionary automatic system, whose modular structure favors its application to the automatic construction of intelligent systems. EvoBANE has been applied to two classification benchmark datasets belonging to different application domains, and statistically compared with a genetic algorithm performing the same tasks. Results show that the proposed system performed better, as it manages different complexity constraints in order to find the simplest solution that best solves every problem.
Resumo:
Se presenta un nuevo método de diseño conceptual en Ingeniería Aeronáutica basado el uso de modelos reducidos, también llamados modelos sustitutos (‘surrogates’). Los ingredientes de la función objetivo se calculan para cada indiviudo mediante la utilización de modelos sustitutos asociados a las distintas disciplinas técnicas que se construyen mediante definiciones de descomposición en valores singulares de alto orden (HOSVD) e interpolaciones unidimensionales. Estos modelos sustitutos se obtienen a partir de un número limitado de cálculos CFD. Los modelos sustitutos pueden combinarse, bien con un método de optimización global de tipo algoritmo genético, o con un método local de tipo gradiente. El método resultate es flexible a la par que mucho más eficiente, computacionalmente hablando, que los modelos convencionales basados en el cálculo directo de la función objetivo, especialmente si aparecen un gran número de parámetros de diseño y/o de modelado. El método se ilustra considerando una versión simplificada del diseño conceptual de un avión. Abstract An optimization method for conceptual design in Aeronautics is presented that is based on the use of surrogate models. The various ingredients in the target function are calculated for each individual using surrogates of the associated technical disciplines that are constructed via high order singular value decomposition and one dimensional interpolation. These surrogates result from a limited number of CFD calculated snapshots. The surrogates are combined with an optimization method, which can be either a global optimization method such as a genetic algorithm or a local optimization method, such as a gradient-like method. The resulting method is both flexible and much more computationally efficient than the conventional method based on direct calculation of the target function, especially if a large number of free design parameters and/or tunablemodeling parameters are present. The method is illustrated considering a simplified version of the conceptual design of an aircraft empennage.