6 resultados para Multiagent System
em Universidad Politécnica de Madrid
Resumo:
This article presents the model of a multi-agent system (SMAF), which objectives are the input of fuzzy incidents as the human experts express them with different severities degrees and the further search and suggestion of solutions. The solutions will be later confirm or not by the users. This model was designed, implemented and tested in the telecommunications field, with heterogeneous agents in a cooperative model. In the design, different abstract levels where considered, according to the agents? objectives, their ways to carry it out and the environment in which they act. Each agent is modeled with different spectrum of the knowledge base
Resumo:
This article presents the model and implementation of a multiagent fuzzy system (MAFS), to automate the search of solutions of incidents in telecommunications, expressed by the users in an imprecise way and, later, registered in a a knowledge base keeping their original vaguenesses and the relationships between the incidents considered as ancestors and descendants. The process of the fuzzy incidents, no matter their causes, is based on the application of a formula which transforms the intervals of the fuzzy incidents to a computational language and in the interaction between the different kinds of software agents and the humans. To search and suggest solutions of the incident originally stated, a search algorithm is used and illustrated with an example. The preliminary results obtained show the users' satisfaction, in a great percentage of the presented cases. The system is adaptive and allows to record new solutions for future users.
Resumo:
This paper describes ExperNet, an intelligent multi-agent system that was developed under an EU funded project to assist in the management of a large-scale data network. ExperNet assists network operators at various nodes of a WAN to detect and diagnose hardware failures and network traffic problems and suggests the most feasible solution, through a web-based interface. ExperNet is composed by intelligent agents, capable of both local problem solving and social interaction among them for coordinating problem diagnosis and repair. The current network state is captured and maintained by conventional network management and monitoring software components, which have been smoothly integrated into the system through sophisticated information exchange interfaces. For the implementation of the agents, a distributed Prolog system enhanced with networking facilities was developed. The agents’ knowledge base is developed in an extensible and reactive knowledge base system capable of handling multiple types of knowledge representation. ExperNet has been developed, installed and tested successfully in an experimental network zone of Ukraine.
Resumo:
This paper describes the multi-agent organization of a computer system that was designed to assist operators in decision making in the presence of emergencies. The application was developed for the case of emergencies caused by river floods. It operates on real-time receiving data recorded by sensors (rainfall, water levels, flows, etc.) and applies multi-agent techniques to interpret the data, predict the future behavior and recommend control actions. The system includes an advanced knowledge based architecture with multiple symbolic representation with uncertainty models (bayesian networks). This system has been applied and validated at two particular sites in Spain (the Jucar basin and the South basin).
Resumo:
In this paper, an innovative approach to perform distributed Bayesian inference using a multi-agent architecture is presented. The final goal is dealing with uncertainty in network diagnosis, but the solution can be of applied in other fields. The validation testbed has been a P2P streaming video service. An assessment of the work is presented, in order to show its advantages when it is compared with traditional manual processes and other previous systems.
Resumo:
This paper presents the knowledge model of a distributed decision support system, that has been designed for the management of a national network in Ukraine. It shows how advanced Artificial Intelligence techniques (multiagent systems and knowledge modelling) have been applied to solve this real-world decision support problem: on the one hand its distributed nature, implied by different loci of decision-making at the network nodes, suggested to apply a multiagent solution; on the other, due to the complexity of problem-solving for local network administration, it was useful to apply knowledge modelling techniques, in order to structure the different knowledge types and reasoning processes involved. The paper sets out from a description of our particular management problem. Subsequently, our agent model is described, pointing out the local problem-solving and coordination knowledge models. Finally, the dynamics of the approach is illustrated by an example.