5 resultados para Mott Insulators

em Universidad Politécnica de Madrid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Indium nitride (InN) has been the subject of intense research in recent years. Some of its most attractive features are its excellent transport properties such as its small band edge electron effective mass, high electron mobilities and peak drift velocities, and high frequency transient drift velocity oscillations [1]. These suggest enormous potential applications for InN in high frequency electronic devices. But to date the high unintentional bulk electron concentration (n~1018 cm-3) of undoped InN samples and the surface electron accumulation layer make it a hard task to create a reliable metalsemiconductor Schottky barrier. Some attempts have been made to overcome this problem by means of material oxidation [2] or deposition of insulators [3]. In this work we present a way to obtain an electrical rectification behaviour by means of heterojunction growth. Due to the big band gap differences among nitride semiconductors, it’s possible to create a structure with high band offsets. In InN/GaN heterojunctions, depending on the GaN doping, the magnitude of conduction and valence band offset are critical parameters which allow distinguishing among different electrical behaviours. The earliest estimate of the valence band offset at an InN–GaN heterojunction in a wurtzite structure was measured to be ~0.85 eV [4], while the Schottky barrier heights were determined to be ~ 1,4 eV [5].We grew In-face InN layer with varying thickness (between 150 nm and 1 mm) by plasma assisted molecular beam epitaxy (PA-MBE) on GaNntemplates (GaN/Al2O3), with temperatures ranging between 300°C and 450°C. The different doping in GaN template (Si doping, Fe doping and Mg doping) results in differences in band alignments of the two semiconductors changing electrical barriers for carriers and consequently electrical conduction behaviour. The processing of the devices includes metallization of the ohmic contacts on InN and GaN, for which we used Ti/Al/Ni/Au. Whereas an ohmic contact on InN is straightforward, the main issue was the fabrication of the contact on GaN due to the very low decomposition temperature of InN. A standard ohmic contact on GaN is generally obtained by high temperature rapid thermal annealing (RTA), typically done between 500ºC and 900ºC[6]. In this case, the limitation due to the presence of In-face InN imposes an upper limit on the temperature for the thermal annealing process and ohmic contact formation of about 450°C. We will present results on the morphology of the InN layers by X-Ray diffraction and SEM, and electrical measurements, in particular current-voltage and capacitance-voltage characteristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intermediate band formation on silicon layers for solar cell applications was achieved by titanium implantation and laser annealing. A two-layer heterogeneous system, formed by the implanted layer and by the un-implanted substrate, was formed. In this work, we present for the first time electrical characterization results which show that recombination is suppressed when the Ti concentration is high enough to overcome the Mott limit, in agreement with the intermediate band theory. Clear differences have been observed between samples implanted with doses under or over the Mott limit. Samples implanted under the Mott limit have capacitance values much lower than the un-implanted ones as corresponds to a highly doped semiconductor Schottky junction. However, when the Mott limit is surpassed, the samples have much higher capacitance, revealing that the intermediate band is formed. The capacitance increasing is due to the big amount of charge trapped at the intermediate band, even at low temperatures. Ti deep levels have been measured by admittance spectroscopy. These deep levels are located at energies which vary from 0.20 to 0.28?eV below the conduction band for implantation doses in the range 1013-1014 at./cm2. For doses over the Mott limit, the implanted atoms become nonrecombinant. Capacitance voltage transient technique measurements prove that the fabricated devices consist of two-layers, in which the implanted layer and the substrate behave as an n+/n junction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concept of "intermediate band solar cell" (IBSC) is, apparently, simple to grasp. However, since the idea was proposed, our understanding has improved and we feel now that we can explain better some concepts than we initially introduced. Clarifying these concepts is important, even if they are well-known for the advanced researcher, so that efforts can be driven in the right direction from start. The six pieces of this work are: Does a miniband need to be formed when the IBSC is implemented with quantum dots?; What are the problems of each of the main practical approaches that exist today? What are the simplest experimental techniques to demonstrate whether an IBSC is working as such or not? What is the issue with the absorption coefficient overlap? and Mott's transition? What the best system would be, if any?

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we present a structural and optoelectronic characterization of high dose Ti implanted Si subsequently pulsed-laser melted (Ti supersaturated Si). Time-of-flight secondary ion mass spectrometry analysis reveals that the theoretical Mott limit has been surpassed after the laser process and transmission electron microscopy images show a good lattice reconstruction. Optical characterization shows strong sub-band gap absorption related to the high Ti concentration. Photoconductivity measurements show that Ti supersaturated Si presents spectral response orders of magnitude higher than unimplanted Si at energies below the band gap. We conclude that the observed below band gap photoconductivity cannot be attributed to structural defects produced by the fabrication processes and suggest that both absorption coefficient of the new material and lifetime of photoexcited carriers have been enhanced due to the presence of a high Ti concentration. This remarkable result proves that Ti supersaturated Si is a promising material for both infrared detectors and high efficiency photovoltaic devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El objetivo del presente proyecto es el diseño de una vivienda unifamiliar de manera que el aporte de energía no renovable sea el mínimo para conseguir las condiciones de confort óptimas para los ocupantes durante todo el año. Para su diseño se tendrá en cuenta el aporte de energía solar pasiva y el uso de aislantes térmicos a lo largo de la envolvente para la reducción de las necesidades de energía. Se dimensiona una instalación geotérmica para el abastecimiento de calefacción, refrigeración y agua caliente sanitaria (ACS). En este dimensionamiento se incluyen los sondeos geotérmicos, el equipo de bomba de calor y la instalación de suelo radiante. En el estudio de iluminación se analizan las necesidades de alumbrado de la vivienda utilizando luminarias led. Por último se evalúa la viabilidad económica que supone sustituir una instalación de caldera de gasoil por la instalación geotérmica dimensionada y la viabilidad de sustituir luminarias incandescentes por luminarias led. ABSTRACT The purpose of this paper is the design of a single family home with the lowest nonrenewable energy input, so optimum comfort living conditions for the occupants during the whole year can be reached. In order to design the house, both passive solar energy input and the use of thermal insulators will be taken into account. A geothermal installation for the heating, cooling and Domestic Hot Water (DHC) supply will be measured. In this measuring, the boreholls, the heat pump equipment and the radiant floor heating installation are included. In the study of illumination of the house, the lighting needs using LED luminaires are analised. Finally, the economic viability when replacing the installation of a diesel boiler for the measured geothermal installation is assessed, as well as the viability when replacing incandescent luminaires for LED luminaires