16 resultados para Motores marinos

em Universidad Politécnica de Madrid


Relevância:

70.00% 70.00%

Publicador:

Resumo:

El 10 de octubre de 2008 la Organización Marítima Internacional (OMI) firmó una modificación al Anexo VI del convenio MARPOL 73/78, por la que estableció una reducción progresiva de las emisiones de óxidos de azufre (SOx) procedentes de los buques, una reducción adicional de las emisiones de óxidos de nitrógeno (NOx), así como límites en las emisiones de dióxido de Carbono (CO2) procedentes de los motores marinos y causantes de problemas medioambientales como la lluvia ácida y efecto invernadero. Centrándonos en los límites sobre las emisiones de azufre, a partir del 1 de enero de 2015 esta normativa obliga a todos los buques que naveguen por zonas controladas, llamadas Emission Control Area (ECA), a consumir combustibles con un contenido de azufre menor al 0,1%. A partir del 1 de enero del año 2020, o bien del año 2025, si la OMI decide retrasar su inicio, los buques deberán consumir combustibles con un contenido de azufre menor al 0,5%. De igual forma que antes, el contenido deberá ser rebajado al 0,1%S, si navegan por el interior de zonas ECA. Por su parte, la Unión Europea ha ido más allá que la OMI, adelantando al año 2020 la aplicación de los límites más estrictos de la ley MARPOL sobre las aguas de su zona económica exclusiva. Para ello, el 21 de noviembre de 2013 firmó la Directiva 2012 / 33 / EU como adenda a la Directiva de 1999. Tengamos presente que la finalidad de estas nuevas leyes es la mejora de la salud pública y el medioambiente, produciendo beneficios sociales, en forma de reducción de enfermedades, sobre todo de tipo respiratorio, a la vez que se reduce la lluvia ácida y sus nefastas consecuencias. La primera pregunta que surge es ¿cuál es el combustible actual de los buques y cuál será el que tengan que consumir para cumplir con esta Regulación? Pues bien, los grandes buques de navegación internacional consumen hoy en día fuel oil con un nivel de azufre de 3,5%. ¿Existen fueles con un nivel de azufre de 0,5%S? Como hemos concluido en el capítulo 4, para las empresas petroleras, la producción de fuel oil como combustible marino es tratada como un subproducto en su cesta de productos refinados por cada barril de Brent, ya que la demanda de fuel respecto a otros productos está bajando y además, el margen de beneficio que obtienen por la venta de otros productos petrolíferos es mayor que con el fuel. Así, podemos decir que las empresas petroleras no están interesadas en invertir en sus refinerías para producir estos fueles con menor contenido de azufre. Es más, en el caso de que alguna compañía decidiese invertir en producir un fuel de 0,5%S, su precio debería ser muy similar al del gasóleo para poder recuperar las inversiones empleadas. Por lo tanto, el único combustible que actualmente cumple con los nuevos niveles impuestos por la OMI es el gasóleo, con un precio que durante el año 2014 estuvo a una media de 307 USD/ton más alto que el actual fuel oil. Este mayor precio de compra de combustible impactará directamente sobre el coste del trasporte marítimo. La entrada en vigor de las anteriores normativas está suponiendo un reto para todo el sector marítimo. Ante esta realidad, se plantean diferentes alternativas con diferentes implicaciones técnicas, operativas y financieras. En la actualidad, son tres las alternativas con mayor aceptación en el sector. La primera alternativa consiste en “no hacer nada” y simplemente cambiar el tipo de combustible de los grandes buques de fuel oil a gasóleo. Las segunda alternativa es la instalación de un equipo scrubber, que permitiría continuar con el consumo de fuel oil, limpiando sus gases de combustión antes de salir a la atmósfera. Y, por último, la tercera alternativa consiste en el uso de Gas Natural Licuado (GNL) como combustible, con un precio inferior al del gasóleo. Sin embargo, aún existen importantes incertidumbres sobre la evolución futura de precios, operación y mantenimiento de las nuevas tecnologías, inversiones necesarias, disponibilidad de infraestructura portuaria e incluso el desarrollo futuro de la propia normativa internacional. Estas dudas hacen que ninguna de estas tres alternativas sea unánime en el sector. En esta tesis, tras exponer en el capítulo 3 la regulación aplicable al sector, hemos investigado sus consecuencias. Para ello, hemos examinado en el capítulo 4 si existen en la actualidad combustibles marinos que cumplan con los nuevos límites de azufre o en su defecto, cuál sería el precio de los nuevos combustibles. Partimos en el capítulo 5 de la hipótesis de que todos los buques cambian su consumo de fuel oil a gasóleo para cumplir con dicha normativa, calculamos el incremento de demanda de gasóleo que se produciría y analizamos las consecuencias que este hecho tendría sobre la producción de gasóleos en el Mediterráneo. Adicionalmente, calculamos el impacto económico que dicho incremento de coste producirá sobre sector exterior de España. Para ello, empleamos como base de datos el sistema de control de tráfico marítimo Authomatic Identification System (AIS) para luego analizar los datos de todos los buques que han hecho escala en algún puerto español, para así calcular el extra coste anual por el consumo de gasóleo que sufrirá el transporte marítimo para mover todas las importaciones y exportaciones de España. Por último, en el capítulo 6, examinamos y comparamos las otras dos alternativas al consumo de gasóleo -scrubbers y propulsión con GNL como combustible- y, finalmente, analizamos en el capítulo 7, la viabilidad de las inversiones en estas dos tecnologías para cumplir con la regulación. En el capítulo 5 explicamos los numerosos métodos que existen para calcular la demanda de combustible de un buque. La metodología seguida para su cálculo será del tipo bottom-up, que está basada en la agregación de la actividad y las características de cada tipo de buque. El resultado está basado en la potencia instalada de cada buque, porcentaje de carga del motor y su consumo específico. Para ello, analizamos el número de buques que navegan por el Mediterráneo a lo largo de un año mediante el sistema AIS, realizando “fotos” del tráfico marítimo en el Mediterráneo y reportando todos los buques en navegación en días aleatorios a lo largo de todo el año 2014. Por último, y con los datos anteriores, calculamos la demanda potencial de gasóleo en el Mediterráneo. Si no se hace nada y los buques comienzan a consumir gasóleo como combustible principal, en vez del actual fuel oil para cumplir con la regulación, la demanda de gasoil en el Mediterráneo aumentará en 12,12 MTA (Millones de Toneladas Anuales) a partir del año 2020. Esto supone alrededor de 3.720 millones de dólares anuales por el incremento del gasto de combustible tomando como referencia el precio medio de los combustibles marinos durante el año 2014. El anterior incremento de demanda en el Mediterráneo supondría el 43% del total de la demanda de gasóleos en España en el año 2013, incluyendo gasóleos de automoción, biodiesel y gasóleos marinos y el 3,2% del consumo europeo de destilados medios durante el año 2014. ¿Podrá la oferta del mercado europeo asumir este incremento de demanda de gasóleos? Europa siempre ha sido excedentaria en gasolina y deficitaria en destilados medios. En el año 2009, Europa tuvo que importar 4,8 MTA de Norte América y 22,1 MTA de Asia. Por lo que, este aumento de demanda sobre la ya limitada capacidad de refino de destilados medios en Europa incrementará las importaciones y producirá también aumentos en los precios, sobre todo del mercado del gasóleo. El sector sobre el que más impactará el incremento de demanda de gasóleo será el de los cruceros que navegan por el Mediterráneo, pues consumirán un 30,4% de la demanda de combustible de toda flota mundial de cruceros, lo que supone un aumento en su gasto de combustible de 386 millones de USD anuales. En el caso de los RoRos, consumirían un 23,6% de la demanda de la flota mundial de este tipo de buque, con un aumento anual de 171 millones de USD sobre su gasto de combustible anterior. El mayor incremento de coste lo sufrirán los portacontenedores, con 1.168 millones de USD anuales sobre su gasto actual. Sin embargo, su consumo en el Mediterráneo representa sólo el 5,3% del consumo mundial de combustible de este tipo de buques. Estos números plantean la incertidumbre de si semejante aumento de gasto en buques RoRo hará que el transporte marítimo de corta distancia en general pierda competitividad sobre otros medios de transporte alternativos en determinadas rutas. De manera que, parte del volumen de mercancías que actualmente transportan los buques se podría trasladar a la carretera, con los inconvenientes medioambientales y operativos, que esto produciría. En el caso particular de España, el extra coste por el consumo de gasóleo de todos los buques con escala en algún puerto español en el año 2013 se cifra en 1.717 millones de EUR anuales, según demostramos en la última parte del capítulo 5. Para realizar este cálculo hemos analizado con el sistema AIS a todos los buques que han tenido escala en algún puerto español y los hemos clasificado por distancia navegada, tipo de buque y potencia. Este encarecimiento del transporte marítimo será trasladado al sector exterior español, lo cual producirá un aumento del coste de las importaciones y exportaciones por mar en un país muy expuesto, pues el 75,61% del total de las importaciones y el 53,64% del total de las exportaciones se han hecho por vía marítima. Las tres industrias que se verán más afectadas son aquellas cuyo valor de mercancía es inferior respecto a su coste de transporte. Para ellas los aumentos del coste sobre el total del valor de cada mercancía serán de un 2,94% para la madera y corcho, un 2,14% para los productos minerales y un 1,93% para las manufacturas de piedra, cemento, cerámica y vidrio. Las mercancías que entren o salgan por los dos archipiélagos españoles de Canarias y Baleares serán las que se verán más impactadas por el extra coste del transporte marítimo, ya que son los puertos más alejados de otros puertos principales y, por tanto, con más distancia de navegación. Sin embargo, esta no es la única alternativa al cumplimiento de la nueva regulación. De la lectura del capítulo 6 concluimos que las tecnologías de equipos scrubbers y de propulsión con GNL permitirán al buque consumir combustibles más baratos al gasoil, a cambio de una inversión en estas tecnologías. ¿Serán los ahorros producidos por estas nuevas tecnologías suficientes para justificar su inversión? Para contestar la anterior pregunta, en el capítulo 7 hemos comparado las tres alternativas y hemos calculado tanto los costes de inversión como los gastos operativos correspondientes a equipos scrubbers o propulsión con GNL para una selección de 53 categorías de buques. La inversión en equipos scrubbers es más conveniente para buques grandes, con navegación no regular. Sin embargo, para buques de tamaño menor y navegación regular por puertos con buena infraestructura de suministro de GNL, la inversión en una propulsión con GNL como combustible será la más adecuada. En el caso de un tiempo de navegación del 100% dentro de zonas ECA y bajo el escenario de precios visto durante el año 2014, los proyectos con mejor plazo de recuperación de la inversión en equipos scrubbers son para los cruceros de gran tamaño (100.000 tons. GT), para los que se recupera la inversión en 0,62 años, los grandes portacontenedores de más de 8.000 TEUs con 0,64 años de recuperación y entre 5.000-8.000 TEUs con 0,71 años de recuperación y, por último, los grandes petroleros de más de 200.000 tons. de peso muerto donde tenemos un plazo de recuperación de 0,82 años. La inversión en scrubbers para buques pequeños, por el contrario, tarda más tiempo en recuperarse llegando a más de 5 años en petroleros y quimiqueros de menos de 5.000 toneladas de peso muerto. En el caso de una posible inversión en propulsión con GNL, las categorías de buques donde la inversión en GNL es más favorable y recuperable en menor tiempo son las más pequeñas, como ferris, cruceros o RoRos. Tomamos ahora el caso particular de un buque de productos limpios de 38.500 toneladas de peso muerto ya construido y nos planteamos la viabilidad de la inversión en la instalación de un equipo scrubber o bien, el cambio a una propulsión por GNL a partir del año 2015. Se comprueba que las dos variables que más impactan sobre la conveniencia de la inversión son el tiempo de navegación del buque dentro de zonas de emisiones controladas (ECA) y el escenario futuro de precios del MGO, HSFO y GNL. Para realizar este análisis hemos estudiado cada inversión, calculando una batería de condiciones de mérito como el payback, TIR, VAN y la evolución de la tesorería del inversor. Posteriormente, hemos calculado las condiciones de contorno mínimas de este buque en concreto para asegurar una inversión no sólo aceptable, sino además conveniente para el naviero inversor. En el entorno de precios del 2014 -con un diferencial entre fuel y gasóleo de 264,35 USD/ton- si el buque pasa más de un 56% de su tiempo de navegación en zonas ECA, conseguirá una rentabilidad de la inversión para inversores (TIR) en el equipo scrubber que será igual o superior al 9,6%, valor tomado como coste de oportunidad. Para el caso de inversión en GNL, en el entorno de precios del año 2014 -con un diferencial entre GNL y gasóleo de 353,8 USD/ton FOE- si el buque pasa más de un 64,8 % de su tiempo de navegación en zonas ECA, conseguirá una rentabilidad de la inversión para inversores (TIR) que será igual o superior al 9,6%, valor del coste de oportunidad. Para un tiempo en zona ECA estimado de un 60%, la rentabilidad de la inversión (TIR) en scrubbers para los inversores será igual o superior al 9,6%, el coste de oportunidad requerido por el inversor, para valores del diferencial de precio entre los dos combustibles alternativos, gasóleo (MGO) y fuel oil (HSFO) a partir de 244,73 USD/ton. En el caso de una inversión en propulsión GNL se requeriría un diferencial de precio entre MGO y GNL de 382,3 USD/ton FOE o superior. Así, para un buque de productos limpios de 38.500 DWT, la inversión en una reconversión para instalar un equipo scrubber es más conveniente que la de GNL, pues alcanza rentabilidades de la inversión (TIR) para inversores del 12,77%, frente a un 6,81% en el caso de invertir en GNL. Para ambos cálculos se ha tomado un buque que navegue un 60% de su tiempo por zona ECA y un escenario de precios medios del año 2014 para el combustible. Po otro lado, las inversiones en estas tecnologías a partir del año 2025 para nuevas construcciones son en ambos casos convenientes. El naviero deberá prestar especial atención aquí a las características propias de su buque y tipo de navegación, así como a la infraestructura de suministros y vertidos en los puertos donde vaya a operar usualmente. Si bien, no se ha estudiado en profundidad en esta tesis, no olvidemos que el sector marítimo debe cumplir además con las otras dos limitaciones que la regulación de la OMI establece sobre las emisiones de óxidos de Nitrógeno (NOx) y Carbono (CO2) y que sin duda, requerirán adicionales inversiones en diversos equipos. De manera que, si bien las consecuencias del consumo de gasóleo como alternativa al cumplimiento de la Regulación MARPOL son ciertamente preocupantes, existen alternativas al uso del gasóleo, con un aumento sobre el coste del transporte marítimo menor y manteniendo los beneficios sociales que pretende dicha ley. En efecto, como hemos demostrado, las opciones que se plantean como más rentables desde el punto de vista financiero son el consumo de GNL en los buques pequeños y de línea regular (cruceros, ferries, RoRos), y la instalación de scrubbers para el resto de buques de grandes dimensiones. Pero, por desgracia, estas inversiones no llegan a hacerse realidad por el elevado grado de incertidumbre asociado a estos dos mercados, que aumenta el riesgo empresarial, tanto de navieros como de suministradores de estas nuevas tecnologías. Observamos así una gran reticencia del sector privado a decidirse por estas dos alternativas. Este elevado nivel de riesgo sólo puede reducirse fomentando el esfuerzo conjunto del sector público y privado para superar estas barreras de entrada del mercado de scrubbers y GNL, que lograrían reducir las externalidades medioambientales de las emisiones sin restar competitividad al transporte marítimo. Creemos así, que los mismos organismos que aprobaron dicha ley deben ayudar al sector naviero a afrontar las inversiones en dichas tecnologías, así como a impulsar su investigación y promover la creación de una infraestructura portuaria adaptada a suministros de GNL y a descargas de vertidos procedentes de los equipos scrubber. Deberían además, prestar especial atención sobre las ayudas al sector de corta distancia para evitar que pierda competitividad frente a otros medios de transporte por el cumplimiento de esta normativa. Actualmente existen varios programas europeos de incentivos, como TEN-T o Marco Polo, pero no los consideramos suficientes. Por otro lado, la Organización Marítima Internacional debe confirmar cuanto antes si retrasa o no al 2025 la nueva bajada del nivel de azufre en combustibles. De esta manera, se eliminaría la gran incertidumbre temporal que actualmente tienen tanto navieros, como empresas petroleras y puertos para iniciar sus futuras inversiones y poder estudiar la viabilidad de cada alternativa de forma individual. ABSTRACT On 10 October 2008 the International Maritime Organization (IMO) signed an amendment to Annex VI of the MARPOL 73/78 convention establishing a gradual reduction in sulphur oxide (SOx) emissions from ships, and an additional reduction in nitrogen oxide (NOx) emissions and carbon dioxide (CO2) emissions from marine engines which cause environmental problems such as acid rain and the greenhouse effect. According to this regulation, from 1 January 2015, ships travelling in an Emission Control Area (ECA) must use fuels with a sulphur content of less than 0.1%. From 1 January 2020, or alternatively from 2025 if the IMO should decide to delay its introduction, all ships must use fuels with a sulphur content of less than 0.5%. As before, this content will be 0.1%S for voyages within ECAs. Meanwhile, the European Union has gone further than the IMO, and will apply the strictest limits of the MARPOL directives in the waters of its exclusive economic zone from 2020. To this end, Directive 2012/33/EU was issued on 21 November 2013 as an addendum to the 1999 Directive. These laws are intended to improve public health and the environment, benefiting society by reducing disease, particularly respiratory problems. The first question which arises is: what fuel do ships currently use, and what fuel will they have to use to comply with the Convention? Today, large international shipping vessels consume fuel oil with a sulphur level of 3.5%. Do fuel oils exist with a sulphur level of 0.5%S? As we conclude in Chapter 4, oil companies regard marine fuel oil as a by-product of refining Brent to produce their basket of products, as the demand for fuel oil is declining in comparison to other products, and the profit margin on the sale of other petroleum products is higher. Thus, oil companies are not interested in investing in their refineries to produce low-sulphur fuel oils, and if a company should decide to invest in producing a 0.5%S fuel oil, its price would have to be very similar to that of marine gas oil in order to recoup the investment. Therefore, the only fuel which presently complies with the new levels required by the IMO is marine gas oil, which was priced on average 307 USD/tonne higher than current fuel oils during 2014. This higher purchasing price for fuel will have a direct impact on the cost of maritime transport. The entry into force of the above directive presents a challenge for the entire maritime sector. There are various alternative approaches to this situation, with different technical, operational and financial implications. At present three options are the most widespread in the sector. The first option consists of “doing nothing” and simply switching from fuel oil to marine gas oil in large ships. The second option is installing a scrubber system, which would enable ships to continue consuming fuel oil, cleaning the combustion gases before they are released to the atmosphere. And finally, the third option is using Liquefied Natural Gas (LNG), which is priced lower than marine gas oil, as a fuel. However, there is still significant uncertainty on future variations in prices, the operation and maintenance of the new technologies, the investments required, the availability of port infrastructure and even future developments in the international regulations themselves. These uncertainties mean that none of these three alternatives has been unanimously accepted by the sector. In this Thesis, after discussing all the regulations applicable to the sector in Chapter 3, we investigate their consequences. In Chapter 4 we examine whether there are currently any marine fuels on the market which meet the new sulphur limits, and if not, how much new fuels would cost. In Chapter 5, based on the hypothesis that all ships will switch from fuel oil to marine gas oil to comply with the regulations, we calculate the increase in demand for marine gas oil this would lead to, and analyse the consequences this would have on marine gas oil production in the Mediterranean. We also calculate the economic impact such a cost increase would have on Spain's external sector. To do this, we also use the Automatic Identification System (AIS) system to analyse the data of every ship stopping in any Spanish port, in order to calculate the extra cost of using marine gas oil in maritime transport for all Spain's imports and exports. Finally, in Chapter 6, we examine and compare the other two alternatives to marine gas oil, scrubbers and LNG, and in Chapter 7 we analyse the viability of investing in these two technologies in order to comply with the regulations. In Chapter 5 we explain the many existing methods for calculating a ship's fuel consumption. We use a bottom-up calculation method, based on aggregating the activity and characteristics of each type of vessel. The result is based on the installed engine power of each ship, the engine load percentage and its specific consumption. To do this, we analyse the number of ships travelling in the Mediterranean in the course of one year, using the AIS, a marine traffic monitoring system, to take “snapshots” of marine traffic in the Mediterranean and report all ships at sea on random days throughout 2014. Finally, with the above data, we calculate the potential demand for marine gas oil in the Mediterranean. If nothing else is done and ships begin to use marine gas oil instead of fuel oil in order to comply with the regulation, the demand for marine gas oil in the Mediterranean will increase by 12.12 MTA (Millions Tonnes per Annum) from 2020. This means an increase of around 3.72 billion dollars a year in fuel costs, taking as reference the average price of marine fuels in 2014. Such an increase in demand in the Mediterranean would be equivalent to 43% of the total demand for diesel in Spain in 2013, including automotive diesel fuels, biodiesel and marine gas oils, and 3.2% of European consumption of middle distillates in 2014. Would the European market be able to supply enough to meet this greater demand for diesel? Europe has always had a surplus of gasoline and a deficit of middle distillates. In 2009, Europe had to import 4.8 MTA from North America and 22.1 MTA from Asia. Therefore, this increased demand on Europe's already limited capacity for refining middle distillates would lead to increased imports and higher prices, especially in the diesel market. The sector which would suffer the greatest impact of increased demand for marine gas oil would be Mediterranean cruise ships, which represent 30.4% of the fuel demand of the entire world cruise fleet, meaning their fuel costs would rise by 386 million USD per year. ROROs in the Mediterranean, which represent 23.6% of the demand of the world fleet of this type of ship, would see their fuel costs increase by 171 million USD a year. The greatest cost increase would be among container ships, with an increase on current costs of 1.168 billion USD per year. However, their consumption in the Mediterranean represents only 5.3% of worldwide fuel consumption by container ships. These figures raise the question of whether a cost increase of this size for RORO ships would lead to short-distance marine transport in general becoming less competitive compared to other transport options on certain routes. For example, some of the goods that ships now carry could switch to road transport, with the undesirable effects on the environment and on operations that this would produce. In the particular case of Spain, the extra cost of switching to marine gas oil in all ships stopping at any Spanish port in 2013 would be 1.717 billion EUR per year, as we demonstrate in the last part of Chapter 5. For this calculation, we used the AIS system to analyse all ships which stopped at any Spanish port, classifying them by distance travelled, type of ship and engine power. This rising cost of marine transport would be passed on to the Spanish external sector, increasing the cost of imports and exports by sea in a country which relies heavily on maritime transport, which accounts for 75.61% of Spain's total imports and 53.64% of its total exports. The three industries which would be worst affected are those with goods of lower value relative to transport costs. The increased costs over the total value of each good would be 2.94% for wood and cork, 2.14% for mineral products and 1.93% for manufactured stone, cement, ceramic and glass products. Goods entering via the two Spanish archipelagos, the Canary Islands and the Balearic Islands, would suffer the greatest impact from the extra cost of marine transport, as these ports are further away from other major ports and thus the distance travelled is greater. However, this is not the only option for compliance with the new regulations. From our readings in Chapter 6 we conclude that scrubbers and LNG propulsion would enable ships to use cheaper fuels than marine gas oil, in exchange for investing in these technologies. Would the savings gained by these new technologies be enough to justify the investment? To answer this question, in Chapter 7 we compare the three alternatives and calculate both the cost of investment and the operating costs associated with scrubbers or LNG propulsion for a selection of 53 categories of ships. Investing in scrubbers is more advisable for large ships with no fixed runs. However, for smaller ships with regular runs to ports with good LNG supply infrastructure, investing in LNG propulsion would be the best choice. In the case of total transit time within an ECA and the pricing scenario seen in 2014, the best payback periods on investments in scrubbers are for large cruise ships (100,000 gross tonnage), which would recoup their investment in 0.62 years; large container ships, with a 0.64 year payback period for those over 8,000 TEUs and 0.71 years for the 5,000-8,000 TEU category; and finally, large oil tankers over 200,000 deadweight tonnage, which would recoup their investment in 0.82 years. However, investing in scrubbers would have a longer payback period for smaller ships, up to 5 years or more for oil tankers and chemical tankers under 5,000 deadweight tonnage. In the case of LNG propulsion, a possible investment is more favourable and the payback period is shorter for smaller ship classes, such as ferries, cruise ships and ROROs. We now take the case of a ship transporting clean products, already built, with a deadweight tonnage of 38,500, and consider the viability of investing in installing a scrubber or changing to LNG propulsion, starting in 2015. The two variables with the greatest impact on the advisability of the investment are how long the ship is at sea within emission control areas (ECA) and the future price scenario of MGO, HSFO and LNG. For this analysis, we studied each investment, calculating a battery of merit conditions such as the payback period, IRR, NPV and variations in the investors' liquid assets. We then calculated the minimum boundary conditions to ensure the investment was not only acceptable but advisable for the investor shipowner. Thus, for the average price differential of 264.35 USD/tonne between HSFO and MGO during 2014, investors' return on investment (IRR) in scrubbers would be the same as the required opportunity cost of 9.6%, for values of over 56% ship transit time in ECAs. For the case of investing in LNG and the average price differential between MGO and LNG of 353.8 USD/tonne FOE in 2014, the ship must spend 64.8% of its time in ECAs for the investment to be advisable. For an estimated 60% of time in an ECA, the internal rate of return (IRR) for investors equals the required opportunity cost of 9.6%, based on a price difference of 244.73 USD/tonne between the two alternative fuels, marine gas oil (MGO) and fuel oil (HSFO). An investment in LNG propulsion would require a price differential between MGO and LNG of 382.3 USD/tonne FOE. Thus, for a 38,500 DWT ship carrying clean products, investing in retrofitting to install a scrubber is more advisable than converting to LNG, with an internal rate of return (IRR) for investors of 12.77%, compared to 6.81% for investing in LNG. Both calculations were based on a ship which spends 60% of its time at sea in an ECA and a scenario of average 2014 prices. However, for newly-built ships, investments in either of these technologies from 2025 would be advisable. Here, the shipowner must pay particular attention to the specific characteristics of their ship, the type of operation, and the infrastructure for supplying fuel and handling discharges in the ports where it will usually operate. Thus, while the consequences of switching to marine gas oil in order to comply with the MARPOL regulations are certainly alarming, there are alternatives to marine gas oil, with smaller increases in the costs of maritime transport, while maintaining the benefits to society this law is intended to provide. Indeed, as we have demonstrated, the options which appear most favourable from a financial viewpoint are conversion to LNG for small ships and regular runs (cruise ships, ferries, ROROs), and installing scrubbers for large ships. Unfortunately, however, these investments are not being made, due to the high uncertainty associated with these two markets, which increases business risk, both for shipowners and for the providers of these new technologies. This means we are seeing considerable reluctance regarding these two options among the private sector. This high level of risk can be lowered only by encouraging joint efforts by the public and private sectors to overcome these barriers to entry into the market for scrubbers and LNG, which could reduce the environmental externalities of emissions without affecting the competitiveness of marine transport. Our opinion is that the same bodies which approved this law must help the shipping industry invest in these technologies, drive research on them, and promote the creation of a port infrastructure which is adapted to supply LNG and handle the discharges from scrubber systems. At present there are several European incentive programmes, such as TEN-T and Marco Polo, but we do not consider these to be sufficient. For its part, the International Maritime Organization should confirm as soon as possible whether the new lower sulphur levels in fuels will be postponed until 2025. This would eliminate the great uncertainty among shipowners, oil companies and ports regarding the timeline for beginning their future investments and for studying their viability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El presente trabajo, desarrollado en el marco del Convenio de Cooperación educativa entre la ETSII - UPM y el Ciemat, se realiza con el fin de determinar líneas futuras de investigación y/o aplicación de la tecnología de gasificación termoquímica de biomasa integrada a motores de combustión interna alternativos (MCIA) para generación de potencia, motivados por la necesidad de reducir las emisiones contaminantes, aumentar el uso de las fuentes renovables de energía, reducir la dependencia económica de los combustibles fósiles, aprovechar energéticamente infinidad de residuos del sector agroindustrial y por la necesidad de generar energía a base de combustibles autóctonos que permitan resolver los problemas de suministro eléctrico en zonas no interconectadas eléctricamente en países en vía de desarrollo. En el capítulo 1 se comienza por presentar los objetivos y la justificación del presente trabajo, se enmarca esta tecnología desde el punto de vista histórico, de los combustibles y de los gasógenos, que fue la primera aplicación extendida masivamente durante las dos guerras mundiales en Europa. Además se hace un breve recuento de los principales grupos de investigación y fabricantes a nivel comercial que actualmente trabajan en el desarrollo de esta tecnología. En el capítulo 2 se hacer una breve descripción del proceso de gasificación termoquímica, mostrando los diferentes tipos de gasificadores existentes, las propiedades del combustible primario usado y los factores que afectan la eficiencia de este proceso. En el capítulo 3 se estudia el gas de gasificación desde el punto de vista de la composición, propiedades como combustible motor, requisitos, tratamiento necesario para su uso como combustible en motores de combustión interna, otros usos del GG y riesgos que conlleva su utilización. En el capítulo 4 se presentan un estudio general de los motores de gas, donde se presenta una clasificación, se estudia la manera de regular la operación de estos motores, se hace una descripción cualitativa de la combustión, se muestran algunas aplicaciones y se estudia la combustión en los motores a gas desde el punto de vista de los factores que la afectan. En el capítulo 5 se entra en profundidad sobre el uso del gas de gasificación -GG en MCIA, inicialmente estudiado desde el punto de vista teórico, luego presentando los resultados de varias investigaciones realizadas y por último mostrando algunos de las aplicaciones comerciales actualmente en el mercado. Finalmente se presentan las conclusiones, la bibliografía consultada y un glosario de términos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se ha desarrollado un equipo de medida de emisiones contaminantes de motores térmicos, embarcable en un vehículo, que mide la concentración, el caudal y todas las condiciones termodinámicas asociadas al flujo de escape en tiempo real. Se discute la metodología empleada en la determinación de las emisiones másicas instantáneas, las totales y los factores de emisión, detallando por un lado la configuración física del caudalímetro, la frecuencia de muestreo, el registro de datos, y los cálculos. Y por otro, las correcciones sobre las concentraciones instantáneas por tipo de medida y dinámica propia de los analizadores es necesario realizar. El trabajo se enfoca principalmente en los aspectos termodinámicos asociados, pero se discutirán los problemas físicos de este tipo de medidas: condensado, arrastre de partículas y oscilaciones del flujo. Con objeto de ilustrar las dificultades encontradas y legitimar las soluciones adoptadas, se presentan y se discuten algunos resultados reales obtenidos en un motor en condiciones normales de funcionamiento, y los resultados de validación en base a medidas en banco de rodillos. Los resultados muestran la importancia del diseño físico del caudalímetro, de la precisión y rapidez de los analizadores y de la adecuada frecuencia de muestreo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta Tesis Doctoral se encuadra en el ámbito de la medida de emisiones contaminantes y de consumo de combustible en motores de combustión interna alternativos cuando se utilizan como plantas de potencia para propulsión de vehículos ligeros de carretera, y más concretamente en las medidas dinámicas con el vehículo circulando en tráfico real. En este ámbito, el objetivo principal de la Tesis es estudiar los problemas asociados a la medición en tiempo real con equipos embarcados de variables medioambientales, energéticas y de actividad, de vehículos ligeros propulsados por motores térmicos en tráfico real. Y como consecuencia, desarrollar un equipo y una metodología apropiada para este objetivo, con el fin de realizar consiguientemente un estudio sobre los diferentes factores que influyen sobre las emisiones y el consumo de combustible de vehículos turismo en tráfico real. La Tesis se comienza realizando un estudio prospectivo sobre los trabajos de otros autores relativos al desarrollo de equipos portátiles de medida de emisiones (Portable Emission Measurement Systems – PEMS), problemas asociados a la medición dinámica de emisiones y estudios de aplicación en tráfico real utilizando este tipo de equipos. Como resultado de este estudio se plantea la necesidad de disponer de un equipo específicamente diseñado para ser embarcado en un vehículo que sea capaz de medir en tiempo real las concentraciones de emisiones y el caudal de gases de escape, al mismo tiempo que se registran variables del motor, del vehículo y del entorno como son la pendiente y los datos meteorológicos. De esta forma se establecen las especificaciones y condiciones de diseño del equipo PEMS. Aunque al inicio de esta Tesis ya existían en el mercado algunos sistemas portátiles de medida de emisiones (PEMS: Portable Emissions Measurement Systems), en esta Tesis se investiga, diseña y construye un nuevo sistema propio, denominado MIVECO – PEMS. Se exponen, discuten y justifican todas las soluciones técnicas incorporadas en el sistema que incluyen los subsistema de análisis de gases, subsistemas de toma de muestra incluyendo caudalímetro de gases de escape, el subsistema de medida de variables del entorno y actividad del vehículo y el conjunto de sistemas auxiliares. El diseño final responde a las hipótesis y necesidades planteadas y se valida en uso real, en banco de rodillos y en comparación con otro equipos de medida de emisiones estacionarios y portátiles. En esta Tesis se presenta también toda la investigación que ha conducido a establecer la metodología de tratamiento de las señales registradas en tiempo real que incluye la sincronización, cálculos y propagación de errores. La metodología de selección y caracterización de los recorridos y circuitos y de las pautas de conducción, preparación del vehículo y calibración de los equipos forma también parte del legado de esta Tesis. Para demostrar la capacidad de medida del equipo y el tipo de resultados que pueden obtenerse y que son útiles para la comunidad científica, y las autoridades medioambientales en la parte final de esta Tesis se plantean y se presentan los resultados de varios estudios de variables endógenas y exógenas que afectan a las emisiones instantáneas y a los factores de emisión y consumo (g/km) como: el estilo de conducción, la infraestructura vial, el nivel de congestión del tráfico, tráfico urbano o extraurbano, el contenido de biocarburante, tipo de motor (diesel y encendido provocado), etc. Las principales conclusiones de esta Tesis son que es posible medir emisiones másicas y consumo de motores de vehículos en uso real y que los resultados permiten establecer políticas de reducción de impacto medio ambiental y de eficiencia energética, pero, se deben establecer unas metodologías precisas y se debe tener mucho cuidado en todo el proceso de calibración, medida y postratamientos de los datos. Abstract This doctoral thesis is in the field of emissions and fuel consumption measurement of reciprocating internal combustion engines when are used as power-trains for light-duty road vehicles, and especially in the real-time dynamic measurements procedures when the vehicle is being driven in real traffic. In this context, the main objective of this thesis is to study the problems associated with on-board real-time measuring systems of environmental, energy and activity variables of light vehicles powered by internal combustion engines in real traffic, and as a result, to develop an instrument and an appropriate methodology for this purpose, and consequently to make a study of the different factors which influence the emissions and the fuel consumption of passenger cars in real traffic. The thesis begins developing a prospective study on other authors’ works about development of Portable Emission Measurement Systems (PEMS), problems associated with dynamic emission measurements and application studies on actual traffic using PEMS. As a result of this study, it was shown that a measuring system specifically designed for being on-board on a vehicle, which can measure in real time emission concentrations and exhaust flow, and at the same time to record motor vehicle and environment variables as the slope and atmospheric data, is needed; and the specifications and design parameters of the equipment are proposed. Although at the beginning of this research work there were already on the market some PEMS, in this Thesis a new system is researched, designed and built, called MIVECO – PEMS, in order to meet such measurements needs. Following that, there are presented, discussed and justify all technical solutions incorporated in the system, including the gas analysis subsystem, sampling and exhaust gas flowmeter subsystem, the subsystem for measurement of environment variables and of the vehicle activity and the set of auxiliary subsystems. The final design meets the needs and hypotheses proposed, and is validated in real-life use and chassis dynamometer testing and is also compared with other stationary and on-board systems. This thesis also presents all the research that has led to the methodology of processing the set of signals recorded in real time including signal timing, calculations and error propagation. The methodology to select and characterize of the routes and circuits, the driving patterns, and the vehicle preparation and calibration of the instruments and sensors are part of the legacy of this thesis. To demonstrate the measurement capabilities of the system and the type of results that can be obtained and that are useful for the scientific community and the environmental authorities, at the end of this Thesis is presented the results of several studies of endogenous and exogenous variables that affect the instantaneous and averaged emissions and consumption factors (g/km), as: driving style, road infrastructure, the level of traffic congestion, urban and extra-urban traffic, biofuels content, type of engine (diesel or spark ignition) etc. The main conclusions of this thesis are that it is possible to measure mass emissions and consumption of vehicle engines in actual use and that the results allow us to establish policies to reduce environmental impact and improve energy efficiency, but, to establish precise methodologies and to be very careful in the entire process of calibration, measurement and data post-treatment is necessary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conjunto de artículos publicados en la revista FundiPress sobre la fabricación de camisas

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La propulsión eléctrica constituye hoy una tecnología muy competitiva y de gran proyección de futuro. Dentro de los diversos motores de plasma existentes, el motor de efecto Hall ha adquirido una gran madurez y constituye un medio de propulsión idóneo para un rango amplio de misiones. En la presente Tesis se estudian los motores Hall con geometría convencional y paredes dieléctricas. La compleja interacción entre los múltiples fenómenos físicos presentes hace que sea difícil la simulación del plasma en estos motores. Los modelos híbridos son los que representan un mejor compromiso entre precisión y tiempo de cálculo. Se basan en utilizar un modelo fluido para los electrones y algoritmos de dinámica de partículas PIC (Particle-In- Cell) para los iones y los neutros. Permiten hacer uso de la hipótesis de cuasineutralidad del plasma, a cambio de resolver separadamente las capas límite (o vainas) que se forman en torno a las paredes de la cámara. Partiendo de un código híbrido existente, llamado HPHall-2, el objetivo de la Tesis doctoral ha sido el desarrollo de un código híbrido avanzado que mejorara la simulación de la descarga de plasma en un motor de efecto Hall. Las actualizaciones y mejoras realizadas en las diferentes partes que componen el código comprenden tanto aspectos teóricos como numéricos. Fruto de la extensa revisión de la algoritmia del código HPHall-2 se han conseguido reducir los errores de precisión un orden de magnitud, y se ha incrementado notablemente su consistencia y robustez, permitiendo la simulación del motor en un amplio rango de condiciones. Algunos aspectos relevantes a destacar en el subcódigo de partículas son: la implementación de un nuevo algoritmo de pesado que permite determinar de forma más precisa el flujo de las magnitudes del plasma; la implementación de un nuevo algoritmo de control de población, que permite tener suficiente número de partículas cerca de las paredes de la cámara, donde los gradientes son mayores y las condiciones de cálculo son más críticas; las mejoras en los balances de masa y energía; y un mejor cálculo del campo eléctrico en una malla no uniforme. Merece especial atención el cumplimiento de la condición de Bohm en el borde de vaina, que en los códigos híbridos representa una condición de contorno necesaria para obtener una solución consistente con el modelo de interacción plasma-pared, y que en HPHall-2 aún no se había resuelto satisfactoriamente. En esta Tesis se ha implementado el criterio cinético de Bohm para una población de iones con diferentes cargas eléctricas y una gran dispersión de velocidades. En el código, el cumplimiento de la condición cinética de Bohm se consigue por medio de un algoritmo que introduce una fina capa de aceleración nocolisional adyacente a la vaina y mide adecuadamente el flujo de partículas en el espacio y en el tiempo. Las mejoras realizadas en el subcódigo de electrones incrementan la capacidad de simulación del código, especialmente en la región aguas abajo del motor, donde se simula la neutralización del chorro del plasma por medio de un modelo de cátodo volumétrico. Sin abordar el estudio detallado de la turbulencia del plasma, se implementan modelos sencillos de ajuste de la difusión anómala de Bohm, que permiten reproducir los valores experimentales del potencial y la temperatura del plasma, así como la corriente de descarga del motor. En cuanto a los aspectos teóricos, se hace especial énfasis en la interacción plasma-pared y en la dinámica de los electrones secundarios libres en el interior del plasma, cuestiones que representan hoy en día problemas abiertos en la simulación de los motores Hall. Los nuevos modelos desarrollados buscan una imagen más fiel a la realidad. Así, se implementa el modelo de vaina de termalización parcial, que considera una función de distribución no-Maxwelliana para los electrones primarios y contabiliza unas pérdidas energéticas más cercanas a la realidad. Respecto a los electrones secundarios, se realiza un estudio cinético simplificado para evaluar su grado de confinamiento en el plasma, y mediante un modelo fluido en el límite no-colisional, se determinan las densidades y energías de los electrones secundarios libres, así como su posible efecto en la ionización. El resultado obtenido muestra que los electrones secundarios se pierden en las paredes rápidamente, por lo que su efecto en el plasma es despreciable, no así en las vainas, donde determinan el salto de potencial. Por último, el trabajo teórico y de simulación numérica se complementa con el trabajo experimental realizado en el Pnnceton Plasma Physics Laboratory, en el que se analiza el interesante transitorio inicial que experimenta el motor en el proceso de arranque. Del estudio se extrae que la presencia de gases residuales adheridos a las paredes juegan un papel relevante, y se recomienda, en general, la purga completa del motor antes del modo normal de operación. El resultado final de la investigación muestra que el código híbrido desarrollado representa una buena herramienta de simulación de un motor Hall. Reproduce adecuadamente la física del motor, proporcionando resultados similares a los experimentales, y demuestra ser un buen laboratorio numérico para estudiar el plasma en el interior del motor. Abstract Electric propulsion is today a very competitive technology and has a great projection into the future. Among the various existing plasma thrusters, the Hall effect thruster has acquired a considerable maturity and constitutes an ideal means of propulsion for a wide range of missions. In the present Thesis only Hall thrusters with conventional geometry and dielectric walls are studied. The complex interaction between multiple physical phenomena makes difficult the plasma simulation in these engines. Hybrid models are those representing a better compromise between precision and computational cost. They use a fluid model for electrons and Particle-In-Cell (PIC) algorithms for ions and neutrals. The hypothesis of plasma quasineutrality is invoked, which requires to solve separately the sheaths formed around the chamber walls. On the basis of an existing hybrid code, called HPHall-2, the aim of this doctoral Thesis is to develop an advanced hybrid code that better simulates the plasma discharge in a Hall effect thruster. Updates and improvements of the code include both theoretical and numerical issues. The extensive revision of the algorithms has succeeded in reducing the accuracy errors in one order of magnitude, and the consistency and robustness of the code have been notably increased, allowing the simulation of the thruster in a wide range of conditions. The most relevant achievements related to the particle subcode are: the implementation of a new weighing algorithm that determines more accurately the plasma flux magnitudes; the implementation of a new algorithm to control the particle population, assuring enough number of particles near the chamber walls, where there are strong gradients and the conditions to perform good computations are more critical; improvements in the mass and energy balances; and a new algorithm to compute the electric field in a non-uniform mesh. It deserves special attention the fulfilment of the Bohm condition at the edge of the sheath, which represents a boundary condition necessary to match consistently the hybrid code solution with the plasma-wall interaction, and remained as a question unsatisfactory solved in the HPHall-2 code. In this Thesis, the kinetic Bohm criterion has been implemented for an ion particle population with different electric charges and a large dispersion in their velocities. In the code, the fulfilment of the kinetic Bohm condition is accomplished by an algorithm that introduces a thin non-collisional layer next to the sheaths, producing the ion acceleration, and measures properly the flux of particles in time and space. The improvements made in the electron subcode increase the code simulation capabilities, specially in the region downstream of the thruster, where the neutralization of the plasma jet is simulated using a volumetric cathode model. Without addressing the detailed study of the plasma turbulence, simple models for a parametric adjustment of the anomalous Bohm difussion are implemented in the code. They allow to reproduce the experimental values of the plasma potential and the electron temperature, as well as the discharge current of the thruster. Regarding the theoretical issues, special emphasis has been made in the plasma-wall interaction of the thruster and in the dynamics of free secondary electrons within the plasma, questions that still remain unsolved in the simulation of Hall thrusters. The new developed models look for results closer to reality, such as the partial thermalization sheath model, that assumes a non-Maxwellian distribution functions for primary electrons, and better computes the energy losses at the walls. The evaluation of secondary electrons confinement within the chamber is addressed by a simplified kinetic study; and using a collisionless fluid model, the densities and energies of free secondary electrons are computed, as well as their effect on the plasma ionization. Simulations show that secondary electrons are quickly lost at walls, with a negligible effect in the bulk of the plasma, but they determine the potential fall at sheaths. Finally, numerical simulation and theoretical work is complemented by the experimental work carried out at the Princeton Plasma Physics Laboratory, devoted to analyze the interesting transitional regime experienced by the thruster in the startup process. It is concluded that the gas impurities adhered to the thruster walls play a relevant role in the transitional regime and, as a general recomendation, a complete purge of the thruster before starting its normal mode of operation it is suggested. The final result of the research conducted in this Thesis shows that the developed code represents a good tool for the simulation of Hall thrusters. The code reproduces properly the physics of the thruster, with results similar to the experimental ones, and represents a good numerical laboratory to study the plasma inside the thruster.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabajo es continuación de una serie de estudios sobre la biogeografía de Fusarium que se están realizando desde hace 5 años en España. En él se presentan los resultados analíticos para el género Fusarium de muestras de aguas del cauce del río Andarax y de fondos del mar Mediterráneo en las provincias de Granada y Almería (Sureste de España). Se analizan un total de 18 muestras de agua del río Andarax. De ellas se aislaron 10 especies de Fusarium: F. anthophilum, F. acuminatum, F. chlamydosporum, F. culmorum, F. equiseti, F. verticillioides, F. oxysporum, F. proliferatum, F. solani y F. sambucinum. De las 23 muestras del mar Mediterráneo se aislaron 5 especies: F. equiseti,F. moliniforme, F. oxysporum, F. proliferatum y F. solani. Sobre el total de muestras analizadas, un 27,45% de las muestras de aguas del río y un 29,41% de muestras de procedencia marina presentaron como mínimo una especie de Fusarium a lo largo de casi 12 meses de muestreo. Considerando las muestras según sus orígenes se encuentra que en las de origen aguas del río un 77,77% presentaron alguna especie de Fusarium; en el caso de los fondos marinos un 45,45% de las muestras presentó alguna especie de Fusarium. La mayor presencia de especies en las aguas del río puede ser debida a los contenidos en el agua de partículas de suelo y materia orgánica, después de los arrastres producidos en las orillas por las lluvias. La presencia de especies encontradas en el mar puede ser consecuencia de las aguas de los cauces que desembocan en éste. Sin embargo, no pueden excluirse otras vías.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este artículo se estudia la patogenicidad de las especies de Fusarium aisladas de muestras de fondos marinos del Mediterráneo y de aguas del cauce del río Andarax en las provincias de Granada y Almería (Sureste de España) sobre plántulas de cebada, colirrábano, melón y tomate. La evaluación del poder patógeno se hizo para 41 aislados de 9 especies de Fusarium aisladas de agus de mar y de río: F. acuminatum, F. chlamydosporum, F.culmorum, F. equiseti, F. verticillioides, F. oxysporum, F. proliferatum, F. sambucinum y F. solani. Todos los aislados de las diferentes especies mostraron patogenicidad tanto en preemergencia como en postemergencia de plántulas. No fue posible distiguir a los aislados según su procedencia: aguas marinas o de río.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta tesis presenta un análisis teórico del funcionamiento de toberas magnéticas para la propulsión espacial por plasmas. El estudio está basado en un modelo tridimensional y bi-fluido de la expansión supersónica de un plasma caliente en un campo magnético divergente. El modelo básico es ampliado progresivamente con la inclusión de términos convectivos dominantes de electrones, el campo magnético inducido por el plasma, poblaciones electrónicas múltiples a distintas temperaturas, y la capacidad de integrar el flujo en la región de expansión lejana. La respuesta hiperbólica del plasma es integrada con alta precisión y eficiencia haciendo uso del método de las líneas características. Se realiza una caracterización paramétrica de la expansión 2D del plasma en términos del grado de magnetización de iones, la geometría del campo magnético, y el perfil inicial del plasma. Se investigan los mecanismos de aceleración, mostrando que el campo ambipolar convierte la energía interna de electrones en energía dirigida de iones. Las corrientes diamagnéticas de Hall, que pueden hallarse distribuidas en el volumen del plasma o localizadas en una delgada capa de corriente en el borde del chorro, son esenciales para la operación de la tobera, ya que la fuerza magnética repulsiva sobre ellas es la encargada de confinar radialmente y acelerar axialmente el plasma. El empuje magnético es la reacción a esta fuerza sobre el motor. La respuesta del plasma muestra la separación gradual hacia adentro de los tubos de iones respecto de los magnéticos, lo cual produce la formación de corrientes eléctricas longitudinales y pone el plasma en rotación. La ganancia de empuje obtenida y las pérdidas radiales de la pluma de plasma se evalúan en función de los parámetros de diseño. Se analiza en detalle la separación magnética del plasma aguas abajo respecto a las líneas magnéticas (cerradas sobre sí mismas), necesaria para la aplicación de la tobera magnética a fines propulsivos. Se demuestra que tres teorías existentes sobre separación, que se fundamentan en la resistividad del plasma, la inercia de electrones, y el campo magnético que induce el plasma, son inadecuadas para la tobera magnética propulsiva, ya que producen separación hacia afuera en lugar de hacia adentro, aumentando la divergencia de la pluma. En su lugar, se muestra que la separación del plasma tiene lugar gracias a la inercia de iones y la desmagnetización gradual del plasma que tiene lugar aguas abajo, que permiten la separación ilimitada del flujo de iones respecto a las líneas de campo en condiciones muy generales. Se evalúa la cantidad de plasma que permanece unida al campo magnético y retorna hacia el motor a lo largo de las líneas cerradas de campo, mostrando que es marginal. Se muestra cómo el campo magnético inducido por el plasma incrementa la divergencia de la tobera magnética y por ende de la pluma de plasma en el caso propulsivo, contrariamente a las predicciones existentes. Se muestra también cómo el inducido favorece la desmagnetización del núcleo del chorro, acelerando la separación magnética. La hipótesis de ambipolaridad de corriente local, común a varios modelos de tobera magnética existentes, es discutida críticamente, mostrando que es inadecuada para el estudio de la separación de plasma. Una inconsistencia grave en la derivación matemática de uno de los modelos más aceptados es señalada y comentada. Incluyendo una especie adicional de electrones supratérmicos en el modelo, se estudia la formación y geometría de dobles capas eléctricas en el interior del plasma. Cuando dicha capa se forma, su curvatura aumenta cuanto más periféricamente se inyecten los electrones supratérmicos, cuanto menor sea el campo magnético, y cuanto más divergente sea la tobera magnética. El plasma con dos temperaturas electrónicas posee un mayor ratio de empuje magnético frente a total. A pesar de ello, no se encuentra ninguna ventaja propulsiva de las dobles capas, reforzando las críticas existentes frente a las propuestas de estas formaciones como un mecanismo de empuje. Por último, se presenta una formulación general de modelos autosemejantes de la expansión 2D de una pluma no magnetizada en el vacío. El error asociado a la hipótesis de autosemejanza es calculado, mostrando que es pequeño para plumas hipersónicas. Tres modelos de la literatura son particularizados a partir de la formulación general y comparados. Abstract This Thesis presents a theoretical analysis of the operation of magnetic nozzles for plasma space propulsion. The study is based on a two-dimensional, two-fluid model of the supersonic expansion of a hot plasma in a divergent magnetic field. The basic model is extended progressively to include the dominant electron convective terms, the plasma-induced magnetic field, multi-temperature electron populations, and the capability to integrate the plasma flow in the far expansion region. The hyperbolic plasma response is integrated accurately and efficiently with the method of the characteristic lines. The 2D plasma expansion is characterized parametrically in terms of the ion magnetization strength, the magnetic field geometry, and the initial plasma profile. Acceleration mechanisms are investigated, showing that the ambipolar electric field converts the internal electron energy into directed ion energy. The diamagnetic electron Hall current, which can be distributed in the plasma volume or localized in a thin current sheet at the jet edge, is shown to be central for the operation of the magnetic nozzle. The repelling magnetic force on this current is responsible for the radial confinement and axial acceleration of the plasma, and magnetic thrust is the reaction to this force on the magnetic coils of the thruster. The plasma response exhibits a gradual inward separation of the ion streamtubes from the magnetic streamtubes, which focuses the jet about the nozzle axis, gives rise to the formation of longitudinal currents and sets the plasma into rotation. The obtained thrust gain in the magnetic nozzle and radial plasma losses are evaluated as a function of the design parameters. The downstream plasma detachment from the closed magnetic field lines, required for the propulsive application of the magnetic nozzle, is investigated in detail. Three prevailing detachment theories for magnetic nozzles, relying on plasma resistivity, electron inertia, and the plasma-induced magnetic field, are shown to be inadequate for the propulsive magnetic nozzle, as these mechanisms detach the plume outward, increasing its divergence, rather than focusing it as desired. Instead, plasma detachment is shown to occur essentially due to ion inertia and the gradual demagnetization that takes place downstream, which enable the unbounded inward ion separation from the magnetic lines beyond the turning point of the outermost plasma streamline under rather general conditions. The plasma fraction that remains attached to the field and turns around along the magnetic field back to the thruster is evaluated and shown to be marginal. The plasmainduced magnetic field is shown to increase the divergence of the nozzle and the resulting plasma plume in the propulsive case, and to enhance the demagnetization of the central part of the plasma jet, contrary to existing predictions. The increased demagnetization favors the earlier ion inward separation from the magnetic field. The local current ambipolarity assumption, common to many existing magnetic nozzle models, is critically discussed, showing that it is unsuitable for the study of plasma detachment. A grave mathematical inconsistency in a well-accepted model, related to the acceptance of this assumption, is found out and commented on. The formation and 2D shape of electric double layers in the plasma expansion is studied with the inclusion of an additional suprathermal electron population in the model. When a double layer forms, its curvature is shown to increase the more peripherally suprathermal electrons are injected, the lower the magnetic field strength, and the more divergent the magnetic nozzle is. The twoelectron- temperature plasma is seen to have a greater magnetic-to-total thrust ratio. Notwithstanding, no propulsive advantage of the double layer is found, supporting and reinforcing previous critiques to their proposal as a thrust mechanism. Finally, a general framework of self-similar models of a 2D unmagnetized plasma plume expansion into vacuum is presented and discussed. The error associated with the self-similarity assumption is calculated and shown to be small for hypersonic plasma plumes. Three models of the literature are recovered as particularizations from the general framework and compared.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La presente investigación se basa en el análisis de los diferentes criterios empleados hasta la fecha para el dimensionamiento de las protecciones frente a la socavación presentes en parques eólicos marinos monopilotados. A través de la revisión que se realizó sobre las recomendaciones de diseño existentes se detectó una gran carencia de criterios basados en parámetros característicos del oleaje. En este sentido, considerando la importancia que las acciones del oleaje tienen tanto en el desarrollo del fenómeno de la socavación alrededor de las cimentaciones, como en su propio diseño, se propone el empleo de un nuevo criterio basado en variables caracteristicas del oleaje, y la clasificación de dichas estructuras de acuerdo a la propuesta que Van der Meer realizó en su tesis (Van der Meer, 1988).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El presente trabajo se propone determinar la distribución de tamaño y número de partículas nanométricas provenientes de motores diésel con equipos embarcados en tráfico extraurbano. Para ello, se utilizaron equipos de medición de última generación en condiciones promedio de conducción en tráfico extraurbano por más de 800 km a lo largo del trayecto Madrid-Badajoz-Madrid mediante un vehículo característico del parque automotor español y se implementaron métodos novedosos y pioneros en el registro de este tipo de emisiones. Todo ello abre el camino para líneas de investigación y desarrollo que contribuirán a entender, dimensionar y cualificar el comportamiento de las partículas, así como su impacto en la calidad de vida de la población. El estudio hace dos grandes aportes al campo. Primero, permite registrar las emisiones en condiciones transitorias propias del tráfico real. Segundo, permite mantener controladas las condiciones de medición y evita la formación aleatoria de partículas provenientes de material volátil, gracias al sistema de adecuación de la muestra de gases de escape incorporado. Como resultado, se obtuvo una muestra abundante y confiable que permitió construir modelos matemáticos para calcular la emisión de partículas nanométricas, ultrafinas, finas y totales sobre las bases volumétrica, espacial y temporal en función de la pendiente del perfil orográfico de la carretera, siempre y cuando esté dentro del intervalo ±5.0%. Estos modelos de cálculo de emisiones reducen tanto los costos de experimentación como la complejidad de los equipos necesarios, y fundamentaron el desarrollo de la primera versión de una aplicación informática que calcula las partículas emitidas por un motor diésel en condiciones de tráfico extraurbano ("Partículas Emitidas por Motores Diésel, PEMDI). ABSTRACT The purpose of this research is to determine the distribution of size and number of nanometric particles that come from diesel engines by means of on-board equipment in extra-urban traffic. In order to do this, cutting-edge measuring equipment was used under average driving conditions in extra-urban traffic for more than 800 km along the Madrid-Badajoz-Madrid route using a typical vehicle from Spain's automotive population and innovative, groundbreaking registering methods for this type of emissions were used. All this paves the way for lines of research and development which should help understand, measure and characterize the behavior of such particles, as well as their impact in the quality of life of the general population. The study makes two important contributions to the field. First, it makes it possible to register emissions under transient conditions, which are characteristic to real traffic. Secondly, it provides a means to keep the measuring conditions under control and prevents the random formation of particles of volatile origin through the built-in adjustment system of the exhaust gas sample. As a result, an abundant and reliable sample was gathered, which enabled the building of mathematical models to estimate the emission of nanometric, ultrafine, fine and total particles on volumetric, spatial and temporal bases as a function of the orographic outline of the road within a ±5.0% range. These emission estimating models lower both the experimentation costs and the required equipment's complexity, and they provided the basis for the development of a first software application version that estimates the particles emitted from diesel engines under extra-urban traffic conditions (Partículas Emitidas por Motores Diésel, PEMDI).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Software del libro Motores Alternativos

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Con el fin de conocer mejor a las bacterias, en la actualidad se han desarrollado aplicaciones que permite simular el comportamiento de las colonias formadas por este tipo de organismos. Una de las piezas más importantes que tienen estos simuladores es el motor de físicas. Éste es el encargado de resolver todas las fuerzas producidas entre las bacterias y conseguir que todas queden correctamente colocadas y distribuidas a lo largo de la colonia, tratando de asemejarse lo más posible a la realidad. En una simulación de éstas características, todas las bacterias, además de estar en contacto entre sí, crecen en un pequeño porcentaje durante cada fotograma. Ello produce una gran cantidad de solapamiento a lo largo de toda la colonia que el motor de físicas tiene que resolver. El trabajo que se describe en este documento surge de la ineficiencia del proceso actual para distribuir el solapamiento originado en el interior de la colonia, hasta su exterior. Es importante señalar que la física se lleva el 99% del tiempo de procesado de la simulación de una colonia, con lo que una mejora en el motor de físicas conseguiría incrementar en gran medida la capacidad de simulación. El objetivo no es otro que poder simular más cantidad de bacterias en menos tiempo, facilitando el estudio de esta área tan reciente como es la biología sintética. ---ABSTRACT---In order to better understand bacteria, new applications have been developed to simulate the behavior of colonies formed by these organisms. One of the most important parts of these simulators is the physics engine. This module is responsible for solving all the forces produced between bacteria and ensure that they are properly located and distributed throughout the colony, trying to be as close as possible to reality. In a simulation with these features, all bacteria, besides being in contact with each other, grow in a small percentage at each frame. This produces a large amount of overlap along the entire colony that the physics engine must solve. The work described in this document arises from the inefficiency of the current process to distribute the overlap originated at the core of the colony outwards. Importantly, physics takes up 99% of the processing time of the simulation of a colony. Therefore, improving the physics engine would translate in a drastic increase in the throughput of the simulation. The goal is simply to be able to simulate more bacteria in less time, making the study of the recent area, synthetic biology, much easier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Si bien es verdad que existen algunos problemas de electricidad, donde las corrientes alternas no presentan satisfactorias soluciones y son posibles de emplear únicamente las continuas; por regla general los medios con que actualmente unas y otras cuentan, son tan comparables y tan iguales las ventajas e inconvenientes totales que en cada caso presenta sus uso que, ya que no imposible,es difícil tarea para el ingeniero adoptar razonadamente uno u otro sistema y sólo un detenido estudio del caso que ha de resolver pueden ayudarle en tan delicado asunto.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

De entre los diversos grupos de contaminantes que pueden ser dañinos para ecosistemas acuáticos, sobresalen en los últimos años los biocidas utilizados como principio activo en recubrimientos antifouling ó pinturas anti-incrustantes para cascos de barcos y todo tipo de equipamiento sumergido ó en contacto con agua. Estos recubrimientos se aplican como sistema de protección para combatir la formación y asentamiento de comunidades bioincrustantes (fouling) frente a superficies expuestas al agua, también tienen como finalidad proteger frente a la corrosión de tipo químico y biológico. Normalmente estas pinturas anti-incrustantes son aplicadas en embarcaciones comerciales y de recreo, plataformas petrolíferas, tuberías submarinas, compuertas de presas, instalaciones destinadas a acuicultura, entre otro equipamiento. La utilización de biocidas en la formulación de pinturas anti-incrustantes para barcos ha sido propuesta por muchos investigadores como la aplicación de más impacto para los ecosistemas marinos, debido al intenso tráfico marítimo mundial que provoca la difusión de biocidas contaminantes en los mares, sobre todo en zonas costeras, bahías y puertos que es donde se magnifica el problema. Los llamados recubrimientos antifouling de segunda generación fueron los primeros que emplearon el tributilestaño (TBT) como principio activo en su formulación, a pesar de su gran eficacia y amplia utilización, al cabo del tiempo se ha demostrado su alta toxicidad y persistencia; por lo que existe una gran actividad investigadora en la búsqueda de alternativas asimismo eficientes pero más respetuosas con el medio marino. En este trabajo se pretende comparar los efectos para ecosistemas marinos del TBT y cinco biocidas como son dibutilestaño dicloruro, diuron (diclorofenil dimetil urea), piritionato de Zn ó Zn omadine, óxido de cobre (I) y DCOIT (Dicloro-2-n-octil-4-isotiazol-3-ona). Estos biocidas se han seleccionado en función de su naturaleza química diferenciada, distintas solubilidades en agua, eficacia, ecotoxicidad, persistencia y bioacumulación fundamentalmente. Para proceder a la clasificación del riesgo para ecosistema marino de los biocidas mencionados, nos valdremos de dos metodologías, una será la evaluación de unos índices de riesgo de biocidas para ecosistemas acuáticos con el fin de realizar una clasificación prospectiva de los mismos, basada en criterios PBT (Persistencia, Bioacumulación y Toxicidad para organismos acuáticos) y otra será una evaluación de la razón de la EXPOSICIÓN, valorada como PEC (Predictive Environmental Concentration) con relación a los EFECTOS originados, valorados como PNEC (Predicted No-Effect Concentration). Para cuantificar PEC nos valdremos de modelizaciones para ecosistemas marinos como MAMPEC (Marine Antifoulant Model to Predict Environmental Concentrations). Para cuantificar PNEC se hace uso de bioensayos a corto o largo plazo en organismos acuáticos. De esta manera podremos agrupar los biocidas en diversas categorías de riesgo y así poder decidir cuando su impacto medioambiental es asumible ó no asumible, alternativas posibles y en todo caso que decisiones se deben tomar al respecto.