14 resultados para Mooring of ships
em Universidad Politécnica de Madrid
Resumo:
This paper describes a new category of CAD applications devoted to the definition and parameterization of hull forms, called programmed design. Programmed design relies on two prerequisites. The first one is a product model with a variety of types large enough to face the modeling of any type of ship. The second one is a design language dedicated to create the product model. The main purpose of the language is to publish the modeling algorithms of the application in the designer knowledge domain to let the designer create parametric model scripts. The programmed design is an evolution of the parametric design but it is not just parametric design. It is a tool to create parametric design tools. It provides a methodology to extract the design knowledge by abstracting a design experience in order to store and reuse it. Programmed design is related with the organizational and architectural aspects of the CAD applications but not with the development of modeling algorithms. It is built on top and relies on existing algorithms provided by a comprehensive product model. Programmed design can be useful to develop new applications, to support the evolution of existing applications or even to integrate different types of application in a single one. A three-level software architecture is proposed to make the implementation of the programmed design easier. These levels are the conceptual level based on the design language, the mathematical level based on the geometric formulation of the product model and the visual level based on the polyhedral representation of the model as required by the graphic card. Finally, some scenarios of the use of programmed design are discussed. For instance, the development of specialized parametric hull form generators for a ship type or a family of ships or the creation of palettes of hull form components to be used as parametric design patterns. Also two new processes of reverse engineering which can considerably improve the application have been detected: the creation of the mathematical level from the visual level and the creation of the conceptual level from the mathematical level. © 2012 Elsevier Ltd. All rights reserved. 1. Introduction
Resumo:
En hidrodinámica, el fenómeno de Sloshing se puede definir como el movimiento de la superficie libre de un fluido dentro de un contenedor sometido a fuerzas y perturbaciones externas. El fluido en cuestión experimenta violentos movimientos con importantes deformaciones de su superficie libre. La dinámica del fluido puede llegar a generar cargas hidrodinámicas considerables las cuales pueden afectar la integridad estructural y/o comprometer la estabilidad del vehículo que transporta dicho contenedor. El fenómeno de Sloshing ha sido extensivamente investigado matemática, numérica y experimentalmente, siendo el enfoque experimental el más usado debido a la complejidad del problema, para el cual los modelos matemáticos y de simulación son aun incapaces de predecir con suficiente rapidez y precisión las cargas debidas a dicho fenómeno. El flujo generado por el Sloshing usualmente se caracteriza por la presencia de un fluido multifase (gas-liquido) y turbulencia. Reducir al máximo posible la complejidad del fenómeno de Sloshing sin perder la esencia del problema es el principal reto de esta tesis doctoral, donde un trabajo experimental enfocado en casos canónicos de Sloshing es presentado y documentado con el objetivo de aumentar la comprensión de dicho fenómeno y por tanto intentar proveer información valiosa para validaciones de códigos numéricos. El fenómeno de Sloshing juega un papel importante en la industria del transporte marítimo de gas licuado (LNG). El mercado de LNG en los últimos años ha reportado un crecimiento hasta tres veces mayor al de los mercados de petróleo y gas convencionales. Ingenieros en laboratorios de investigación e ingenieros adscritos a la industria del LNG trabajan continuamente buscando soluciones económicas y seguras para contener, transferir y transportar grandes volúmenes de LNG. Los buques transportadores de LNG (LNGC) han pasado de ser unos pocos buques con capacidad de 75000 m3 hace unos treinta años, a una amplia flota con una capacidad de 140000 m3 actualmente. En creciente número, hoy día se construyen buques con capacidades que oscilan entre 175000 m3 y 250000 m3. Recientemente un nuevo concepto de buque LNG ha salido al mercado y se le conoce como FLNG. Un FLNG es un buque de gran valor añadido que solventa los problemas de extracción, licuefacción y almacenamiento del LNG, ya que cuenta con equipos de extracción y licuefacción a bordo, eliminando por tanto las tareas de transvase de las estaciones de licuefacción en tierra hacia los buques LNGC. EL LNG por tanto puede ser transferido directamente desde el FLNG hacia los buques LNGC en mar abierto. Niveles de llenado intermedios en combinación con oleaje durante las operaciones de trasvase inducen movimientos en los buques que generan por tanto el fenómeno de Sloshing dentro de los tanques de los FLNG y los LNGC. El trabajo de esta tesis doctoral lidia con algunos de los problemas del Sloshing desde un punto de vista experimental y estadístico, para ello una serie de tareas, descritas a continuación, se han llevado a cabo : 1. Un dispositivo experimental de Sloshing ha sido configurado. Dicho dispositivo ha permitido ensayar secciones rectangulares de tanques LNGC a escala con movimientos angulares de un grado de libertad. El dispositivo experimental ha sido instrumentado para realizar mediciones de movimiento, presiones, vibraciones y temperatura, así como la grabación de imágenes y videos. 2. Los impactos de olas generadas dentro de una sección rectangular de un LNGC sujeto a movimientos regulares forzados han sido estudiados mediante la caracterización del fenómeno desde un punto de vista estadístico enfocado en la repetitividad y la ergodicidad del problema. 3. El estudio de los impactos provocados por movimientos regulares ha sido extendido a un escenario más realístico mediante el uso de movimientos irregulares forzados. 4. El acoplamiento del Sloshing generado por el fluido en movimiento dentro del tanque LNGC y la disipación de la energía mecánica de un sistema no forzado de un grado de libertad (movimiento angular) sujeto a una excitación externa ha sido investigado. 5. En la última sección de esta tesis doctoral, la interacción entre el Sloshing generado dentro en una sección rectangular de un tanque LNGC sujeto a una excitación regular y un cuerpo elástico solidario al tanque ha sido estudiado. Dicho estudio corresponde a un problema de interacción fluido-estructura. Abstract In hydrodynamics, we refer to sloshing as the motion of liquids in containers subjected to external forces with large free-surface deformations. The liquid motion dynamics can generate loads which may affect the structural integrity of the container and the stability of the vehicle that carries such container. The prediction of these dynamic loads is a major challenge for engineers around the world working on the design of both the container and the vehicle. The sloshing phenomenon has been extensively investigated mathematically, numerically and experimentally. The latter has been the most fruitful so far, due to the complexity of the problem, for which the numerical and mathematical models are still incapable of accurately predicting the sloshing loads. The sloshing flows are usually characterised by the presence of multiphase interaction and turbulence. Reducing as much as possible the complexity of the sloshing problem without losing its essence is the main challenge of this phd thesis, where experimental work on selected canonical cases are presented and documented in order to better understand the phenomenon and to serve, in some cases, as an useful information for numerical validations. Liquid sloshing plays a key roll in the liquified natural gas (LNG) maritime transportation. The LNG market growth is more than three times the rated growth of the oil and traditional gas markets. Engineers working in research laboratories and companies are continuously looking for efficient and safe ways for containing, transferring and transporting the liquified gas. LNG carrying vessels (LNGC) have evolved from a few 75000 m3 vessels thirty years ago to a huge fleet of ships with a capacity of 140000 m3 nowadays and increasing number of 175000 m3 and 250000 m3 units. The concept of FLNG (Floating Liquified Natural Gas) has appeared recently. A FLNG unit is a high value-added vessel which can solve the problems of production, treatment, liquefaction and storage of the LNG because the vessel is equipped with a extraction and liquefaction facility. The LNG is transferred from the FLNG to the LNGC in open sea. The combination of partial fillings and wave induced motions may generate sloshing flows inside both the LNGC and the FLNG tanks. This work has dealt with sloshing problems from a experimental and statistical point of view. A series of tasks have been carried out: 1. A sloshing rig has been set up. It allows for testing tanks with one degree of freedom angular motion. The rig has been instrumented to measure motions, pressure and conduct video and image recording. 2. Regular motion impacts inside a rectangular section LNGC tank model have been studied, with forced motion tests, in order to characterise the phenomenon from a statistical point of view by assessing the repeatability and practical ergodicity of the problem. 3. The regular motion analysis has been extended to an irregular motion framework in order to reproduce more realistic scenarios. 4. The coupled motion of a single degree of freedom angular motion system excited by an external moment and affected by the fluid moment and the mechanical energy dissipation induced by sloshing inside the tank has been investigated. 5. The last task of the thesis has been to conduct an experimental investigation focused on the strong interaction between a sloshing flow in a rectangular section of a LNGC tank subjected to regular excitation and an elastic body clamped to the tank. It is thus a fluid structure interaction problem.
Resumo:
El objetivo de la tesis es la investigación de algoritmos numéricos para el desarrollo de herramientas numéricas para la simulación de problemas tanto de comportamiento en la mar como de resistencia al avance de buques y estructuras flotantes. La primera herramienta desarrollada resuelve el problema de difracción y radiación de olas. Se basan en el método de los elementos finitos (MEF) para la resolución de la ecuación de Laplace, así como en esquemas basados en MEF, integración a lo largo de líneas de corriente, y en diferencias finitas desarrollados para la condición de superficie libre. Se han desarrollado herramientas numéricas para la resolución de la dinámica de sólido rígido en sistemas multicuerpos con ligaduras. Estas herramientas han sido integradas junto con la herramienta de resolución de olas difractadas y radiadas para la resolución de problemas de interacción de cuerpos con olas. También se han diseñado algoritmos de acoplamientos con otras herramientas numéricas para la resolución de problemas multifísica. En particular, se han realizado acoplamientos con una herramienta numérica basada de cálculo de estructuras con MEF para problemas de interacción fluido-estructura, otra de cálculo de líneas de fondeo, y con una herramienta numérica de cálculo de flujos en tanques internos para problemas acoplados de comportamiento en la mar con “sloshing”. Se han realizado simulaciones numéricas para la validación y verificación de los algoritmos desarrollados, así como para el análisis de diferentes casos de estudio con aplicaciones diversas en los campos de la ingeniería naval, oceánica, y energías renovables marinas. ABSTRACT The objective of this thesis is the research on numerical algorithms to develop numerical tools to simulate seakeeping problems as well as wave resistance problems of ships and floating structures. The first tool developed is a wave diffraction-radiation solver. It is based on the finite element method (FEM) in order to solve the Laplace equation, as well as numerical schemes based on FEM, streamline integration, and finite difference method tailored for solving the free surface boundary condition. It has been developed numerical tools to solve solid body dynamics of multibody systems with body links across them. This tool has been integrated with the wave diffraction-radiation solver to solve wave-body interaction problems. Also it has been tailored coupling algorithms with other numerical tools in order to solve multi-physics problems. In particular, it has been performed coupling with a MEF structural solver to solve fluid-structure interaction problems, with a mooring solver, and with a solver capable of simulating internal flows in tanks to solve couple seakeeping-sloshing problems. Numerical simulations have been carried out to validate and verify the developed algorithms, as well as to analyze case studies in the areas of marine engineering, offshore engineering, and offshore renewable energy.
Simulación de maniobras de buques con sistemas de propulsión no convencional en aguas poco profundas
Resumo:
Los requisitos cada vez más exigentes en cuanto a misiones, limitaciones operacionales y ambientales así como nuevas tecnologías, imponen permanentemente retos a los arquitectos navales para generar alternativas de buques y valorar su bondad en las primeras etapas del proyecto. Este es el caso de los Buques Patrulleros de Apoyo Fluvial Pesados PAF-P, que por requerimiento de la Armada Nacional de Colombia ha diseñado y construido COTECMAR. Los PAF-P, son buques fluviales cuya relación Manga-Calado excede la mayoría de los buques existentes (B/T=9,5), debido principalmente a las restricciones en el calado a consecuencia de la escasa profundidad de los ríos. Estos buques están equipados con sistemas de propulsión acimutales tipo “Pum-Jet”. Las particularidades del buque y del ambiente operacional, caracterizado por ríos tropicales con una variabilidad de profundidad dependiente del régimen de lluvias y sequía, así como la falta de canalización y la corriente, hacen que la maniobrabilidad y controlabilidad sean fundamentales para el cumplimiento de su misión; adicionalmente, no existen modelos matemáticos validados que permitan predecir en las primeras etapas del diseño la maniobrabilidad de este tipo de buques con los efectos asociados por profundidad. La presente tesis doctoral aborda el desarrollo de un modelo matemático para simulación de maniobrabilidad en aguas poco profundas de buques con relación manga-calado alta y con propulsores acimutales tipo “Pump-Jet”, cuyo chorro además de entregar el empuje necesario para el avance del buque, genera la fuerza de gobierno en función del ángulo de orientación del mismo, eliminando la necesidad de timones. El modelo matemático ha sido validado mediante los resultados obtenidos en las pruebas de maniobrabilidad a escala real del PAF-P, a través de la comparación de trayectorias, series temporales de las variables de estado más significativas y parámetros del círculo evolutivo como son diámetro de giro, diámetro táctico, avance y transferencia. El plan de pruebas se basó en técnicas de Diseño de Experimentos “DOE” para racionalizar el número de corridas en diferentes condiciones de profundidad, velocidad y orientación del chorro (ángulo de timón). En el marco de la presente investigación y para minimizar los errores por efectos ambientales y por inexactitud en los instrumentos de medición, se desarrolló un sistema de adquisición y procesamiento de datos de acuerdo con los lineamientos de ITTC. La literatura existente describe los efectos negativos de la profundidad en los parámetros de maniobrabilidad de buques convencionales (Efecto tipo S), principalmente las trayectorias descritas en los círculos evolutivos aumentan en la medida que disminuye la profundidad; no obstante, en buques de alta relación manga-calado, B/T=7,51 (Yoshimura, y otros, 1.988) y B/T=6,38 (Yasukawa, y otros, 1.995) ha sido reportado el efecto contrario (Efecto tipo NS Non Standart). Este último efecto sin embargo, ha sido observado mediante experimentación con modelos a escala pero no ha sido validado en pruebas de buques a escala real. El efecto tipo NS en buques dotados con hélice y timones, se atribuye al mayor incremento de la fuerza del timón comparativamente con las fuerzas del casco en la medida que disminuye la profundidad; en el caso de estudio, el fenómeno está asociado a la mejor eficiencia de la bomba de agua “Pump-Jet”, debido a la resistencia añadida en el casco por efecto de la disminución de la profundidad. Los resultados de las pruebas con buque a escala real validan el excelente desempeño de esta clase de buques, cumpliendo en exceso los criterios de maniobrabilidad existentes y muestran que el diámetro de giro y otras características de maniobrabilidad mejoran con la disminución de la profundidad en buques con alta relación manga-calado. ABSTRACT The increasingly demanding requirements in terms of missions, operational and environmental constraints as well as new technologies, constantly impose challenges to naval architects to generate alternatives and asses their performance in the early stages of design. That is the case of Riverine Support Patrol Vessel (RSPV), designed and built by COTECMAR for the Colombian Navy. RSPV are riverine ships with a Beam-Draft ratio exceeding most of existing ships (B/T=9,5), mainly due to the restrictions in draft as a result of shallow water environment. The ships are equipped with azimuthal propulsion system of the “Pump-Jet” type. The peculiarities of the ship and the operational environment, characterized by tropical rivers of variable depth depending on the rain and dry seasons, as well as the lack channels and the effect of water current, make manoeuvrability and controllability fundamental to fulfill its mission; on the other hand, there are not validated mathematical models available to predict the manoeuvrability of such ships with the associated water depth effects in the early stages of design. This dissertation addresses the development of a mathematical model for shallow waters’ manoeuvrability simulation of ships with high Beam-Draft ratio and azimuthal propulsion systems type “Pump-Jet”, whose stream generates the thrust required by the ship to advance and also the steering force depending on the orientation angle, eliminating the need of rudders. The mathematical model has been validated with the results of RSPV’s full scale manoeuvring tests, through a comparison of paths, time series of state variables and other parameters taken from turning tests, such as turning diameter, tactical diameter, advance and transfer. The test plan was developed applying techniques of Design of Experiments “DOE”, in order to rationalize the number of runs in different conditions of water depth, ship speed and jet stream orientation (rudder angle). A data acquisition and processing system was developed, following the guidelines of ITTC, as part of this research effort, in order to minimize errors by environmental effects and inaccuracy in measurement instruments, The negative effects of depth on manoeuvrability parameters for conventional ships (Effect Type S: the path described by the ship during turning test increase with decrease of water depth), has been documented in the open literature; however for wide-beam ships, B/T=7,51 (Yoshimura, y otros, 1.988) and B/T=6,38 (Yasukawa, y otros, 1.995) has been reported the opposite effect (Type NS). The latter effect has been observed thru model testing but until now had not been validated with full-scale results. In ships with propellers and rudders, type NS effect is due to the fact that increment of rudder force becomes larger than hull force with decrease of water depth; in the study case, the phenomenon is associated with better efficiency of the Pump-Jet once the vessel speed becomes lower, due to hull added resistance by the effect of the decrease of water depth. The results of full scale tests validates the excellent performance of this class of ships, fulfilling the manoeuvrability criteria in excess and showing that turning diameter and other parameters in high beam-draft ratio vessels do improve with the decrease of depth.
Resumo:
Los diques flotantes son estructuras que atenúan la energía del oleaje fundamentalmente por reflexión y turbulencia. Aunque presentan importantes ventajas en términos constructivos y medioambientales, su efectividad es limitada y en la práctica sólo se emplean en condiciones climáticas propias de zonas con oleajes poco energéticos. Por otro lado, el buque es la estructura flotante por excelencia y su empleo para el abrigo portuario y costero en determinadas situaciones puede aportar las ventajas propias de los diques flotantes, al tiempo que ampliar el rango de oleajes frente a los que estas estructuras son efectivas. El propósito de esta Tesis Doctoral es evaluar la viabilidad del empleo de buques fondeados como diques flotantes para el abrigo portuario y costero. Para ello, se han realizado ensayos en modelo físico a escala reducida en un canal de oleaje del Centro de Estudios de Puertos y Costas (CEPYC), con el objeto de determinar los coeficientes de transmisión (Ct), reflexión (Cr) y disipación (Cd) de barcos de diversas tipologías y dimensiones, sometidos a diferentes oleajes en distintas situaciones de carga, fondeo y profundidad del emplazamiento. La efectividad de los buques empleados en los ensayos se ha determinado mediante el análisis de dichos coeficientes y su variación con la altura de ola y el periodo de los oleajes incidentes. Además, se han registrado las fuerzas existentes en las cadenas de fondeo con objeto de comprobar la viabilidad del mismo y facilitar una estimación del diámetro de las cadenas que serían necesarias en cada situación. Posteriormente, se han aplicado los resultados obtenidos en los ensayos en modelo físico reducido a dos situaciones de abrigo portuario y costero. La primera aplicación consiste en el empleo de buques como defensa temporal en fases constructivas por medios marítimos, partiendo de la hipótesis de que, actuando como diques flotantes, puede proteger la zona de la obra y ampliar las ventanas temporales de periodos de actividad en obra marítima. Las actividades que se han analizado son las de dragado de fondos, vertidos de material granular y transporte y fondeo de cajones flotantes para diques y muelles. La segunda aplicación estudiada es el empleo de buques para la protección costera y la formación de salientes y tómbolos. Los coeficientes de transmisión obtenidos se han introducido en formulaciones analíticas que permiten prever la evolución de la costa frente a la protección procurada por el buque actuando como dique flotante exento. Finalmente se han redactado las conclusiones de la investigación y se han propuesto nuevas líneas de investigación relacionadas con esta Tesis Doctoral. Floating breakwaters are structures which attenuate wave energy mainly by reflection and turbulence. They display advantages in terms of construction and ecology, amongst others. However, their use is restricted in practice to certain areas with good climatic conditions and low energy waves. Moreover, ships are the most common floating structures and their use for port and coastal shelter in certain situations could widen the range of applicability in addition to the rest of advantages of floating breakwaters. The purpose of this research is to assess the feasibility of ships anchored as floating breakwaters for port and coastal protection. To that end, tests in a scaled down physical model have been conducted in a wave flume in the Centre of Port and Coastal Studies (CEPYC), in order to determine the transmission (Ct), reflection (Cr) and dissipation (Cd) coefficients of ships of diverse types and dimensions, under different wave, load, anchoring and depth conditions. The effectiveness of the several ships used in the tests has been determined by analyzing these coefficients and their variation with the wave height and period of the incident waves. In addition, the existing forces in the anchor chains have been registered to verify the feasibility of the anchoring systems, as well as to provide an estimation of the diameter of the chains that would be needed in each situation. Subsequently, the results of the tests have been applied to two situations of port and coastal protection. The first one is the use of ships as a temporary defense for maritime works with construction phases by maritime means, on the assumption that, acting as floating breakwaters, they can protect the work area and increase the time windows of periods of activity in maritime works. Dredging, dumping of granular material and transport and positioning of big concrete caissons for docks and breakwaters were the activities analyzed. The second situation is the use of ships for coastal protection and forming salients of sand or tombolos. Some analytical formulations which take into account the transmission coefficients from the tests have been used to predict the evolution of the coastline under the protection given by the ships acting as detached floating breakwaters. Finally, the conclusions of the research have been addressed and the proposal of new lines of work related to the topic has been made.
Resumo:
El desarrollo de actividades de carga y descarga son parte de la esencia de la naturaleza funcional de un puerto, de las cuales derivan en gran medida los ingresos del mismo y la eficiencia de la cadena logística en su conjunto. Las oscilaciones en el interior de una dársena y en un línea de atraque disminuyen la calidad de la estancia de las embarcaciones en puerto, reducen el rendimiento de la estiba de los buques y solicitan y fatigan las estructuras y los cuerpos flotantes amarrados. Si los parámetros que definen la agitación local se aproximan a regiones de fallo 0 parada, el subsistema pierde rendimiento, fiabilidad y finalmente se paralizan las operaciones, produciéndose de este modo tiempos de inactividad. Estas paradas operativas conllevan pérdidas económicas para la terminal y, consecuentemente, para el puerto. Hoy día se dispone vastas redes de monitorización destinadas a la caracterización del medio físico en el entorno de los puertos. Paralelamente, las operaciones de manipulación de cargas en las terminales se están dirigiendo hacia modelos de automatización o semi automatización, que permiten no sólo la sistematización de procesos, sino también un profundo conocimiento del flujo de tareas. En este contexto hay un déficit de información sobre cómo afectan los diferentes forzadores del medio físico al rendimiento, la seguridad funcionalidad del proceso de manipulación de carga y descarga. Esto se debe en gran medida a la falta de registros dilatados en el tiempo que permitan correlacionar todos los aspectos mencionados de un modo particularizado para cada línea de atraque y amarre de un puerto. En esta tesis se desarrolla una metodología de vídeo monitorización no intrusiva y de bajo coste basada en la aplicación de técnicas "pixel tool' y la obtención de los parámetros extrínsecos de una observación monofocal. Con ello pretende poner en valor las infraestructuras de vídeo vigilancia de los puertos y de los laboratorios de experimentación a escala reducida, con el objeto de facilitar el estudio los umbrales operativos de las áreas de atraque y amarre. The development of loading and unloading activities is an essential part of he functional nature of a port, which derive largely from he same income and the efficiency of he supply chain as a whole. The oscillations inside a dock and a mooring line diminish he quality of the stay of vessels in port reducing the performance of the stowage of ship and asking and fatigued structures and moored floating bodies. If the parameters defining the local al agitation regions are close to areas of failure or shutdown, he subsystem looses performance, reliability and eventually paralyzes the operations, thereby producing downtime. These operational stops entail economic 1osses to the terminal and, consequently for the port. Today vast networks of monitoring, aimed at he characterization of the physical environment in the vicinity of he ports, are available. In parallel, the cargo handling operations at terminals are moving towards automation or semi-automation models that allow not only the systematization of processes, but also a deep understanding of he workflow. In this context, there is a lack of information about how the different forcing agents of the physical environment affect the performance and he functional safety of the loading and unloading process. This is due largely to the lack of spread-over-time records which would allow to correlate all aspects mentioned, specifically, for each berthing and mooring of a port. This thesis develops a methodology for non-intrusive and low cost monitoring video based on the application of "pixel tool" techniques and on obtaining the extrinsic parameters of a monofocal observation. It seeks an enhancement of the video monitoring infrastructure at ports and at experimental laboratories of reduced scale, in order to facilitate the study of operational thresholds berthing and mooring areas.
Resumo:
El 10 de octubre de 2008 la Organización Marítima Internacional (OMI) firmó una modificación al Anexo VI del convenio MARPOL 73/78, por la que estableció una reducción progresiva de las emisiones de óxidos de azufre (SOx) procedentes de los buques, una reducción adicional de las emisiones de óxidos de nitrógeno (NOx), así como límites en las emisiones de dióxido de Carbono (CO2) procedentes de los motores marinos y causantes de problemas medioambientales como la lluvia ácida y efecto invernadero. Centrándonos en los límites sobre las emisiones de azufre, a partir del 1 de enero de 2015 esta normativa obliga a todos los buques que naveguen por zonas controladas, llamadas Emission Control Area (ECA), a consumir combustibles con un contenido de azufre menor al 0,1%. A partir del 1 de enero del año 2020, o bien del año 2025, si la OMI decide retrasar su inicio, los buques deberán consumir combustibles con un contenido de azufre menor al 0,5%. De igual forma que antes, el contenido deberá ser rebajado al 0,1%S, si navegan por el interior de zonas ECA. Por su parte, la Unión Europea ha ido más allá que la OMI, adelantando al año 2020 la aplicación de los límites más estrictos de la ley MARPOL sobre las aguas de su zona económica exclusiva. Para ello, el 21 de noviembre de 2013 firmó la Directiva 2012 / 33 / EU como adenda a la Directiva de 1999. Tengamos presente que la finalidad de estas nuevas leyes es la mejora de la salud pública y el medioambiente, produciendo beneficios sociales, en forma de reducción de enfermedades, sobre todo de tipo respiratorio, a la vez que se reduce la lluvia ácida y sus nefastas consecuencias. La primera pregunta que surge es ¿cuál es el combustible actual de los buques y cuál será el que tengan que consumir para cumplir con esta Regulación? Pues bien, los grandes buques de navegación internacional consumen hoy en día fuel oil con un nivel de azufre de 3,5%. ¿Existen fueles con un nivel de azufre de 0,5%S? Como hemos concluido en el capítulo 4, para las empresas petroleras, la producción de fuel oil como combustible marino es tratada como un subproducto en su cesta de productos refinados por cada barril de Brent, ya que la demanda de fuel respecto a otros productos está bajando y además, el margen de beneficio que obtienen por la venta de otros productos petrolíferos es mayor que con el fuel. Así, podemos decir que las empresas petroleras no están interesadas en invertir en sus refinerías para producir estos fueles con menor contenido de azufre. Es más, en el caso de que alguna compañía decidiese invertir en producir un fuel de 0,5%S, su precio debería ser muy similar al del gasóleo para poder recuperar las inversiones empleadas. Por lo tanto, el único combustible que actualmente cumple con los nuevos niveles impuestos por la OMI es el gasóleo, con un precio que durante el año 2014 estuvo a una media de 307 USD/ton más alto que el actual fuel oil. Este mayor precio de compra de combustible impactará directamente sobre el coste del trasporte marítimo. La entrada en vigor de las anteriores normativas está suponiendo un reto para todo el sector marítimo. Ante esta realidad, se plantean diferentes alternativas con diferentes implicaciones técnicas, operativas y financieras. En la actualidad, son tres las alternativas con mayor aceptación en el sector. La primera alternativa consiste en “no hacer nada” y simplemente cambiar el tipo de combustible de los grandes buques de fuel oil a gasóleo. Las segunda alternativa es la instalación de un equipo scrubber, que permitiría continuar con el consumo de fuel oil, limpiando sus gases de combustión antes de salir a la atmósfera. Y, por último, la tercera alternativa consiste en el uso de Gas Natural Licuado (GNL) como combustible, con un precio inferior al del gasóleo. Sin embargo, aún existen importantes incertidumbres sobre la evolución futura de precios, operación y mantenimiento de las nuevas tecnologías, inversiones necesarias, disponibilidad de infraestructura portuaria e incluso el desarrollo futuro de la propia normativa internacional. Estas dudas hacen que ninguna de estas tres alternativas sea unánime en el sector. En esta tesis, tras exponer en el capítulo 3 la regulación aplicable al sector, hemos investigado sus consecuencias. Para ello, hemos examinado en el capítulo 4 si existen en la actualidad combustibles marinos que cumplan con los nuevos límites de azufre o en su defecto, cuál sería el precio de los nuevos combustibles. Partimos en el capítulo 5 de la hipótesis de que todos los buques cambian su consumo de fuel oil a gasóleo para cumplir con dicha normativa, calculamos el incremento de demanda de gasóleo que se produciría y analizamos las consecuencias que este hecho tendría sobre la producción de gasóleos en el Mediterráneo. Adicionalmente, calculamos el impacto económico que dicho incremento de coste producirá sobre sector exterior de España. Para ello, empleamos como base de datos el sistema de control de tráfico marítimo Authomatic Identification System (AIS) para luego analizar los datos de todos los buques que han hecho escala en algún puerto español, para así calcular el extra coste anual por el consumo de gasóleo que sufrirá el transporte marítimo para mover todas las importaciones y exportaciones de España. Por último, en el capítulo 6, examinamos y comparamos las otras dos alternativas al consumo de gasóleo -scrubbers y propulsión con GNL como combustible- y, finalmente, analizamos en el capítulo 7, la viabilidad de las inversiones en estas dos tecnologías para cumplir con la regulación. En el capítulo 5 explicamos los numerosos métodos que existen para calcular la demanda de combustible de un buque. La metodología seguida para su cálculo será del tipo bottom-up, que está basada en la agregación de la actividad y las características de cada tipo de buque. El resultado está basado en la potencia instalada de cada buque, porcentaje de carga del motor y su consumo específico. Para ello, analizamos el número de buques que navegan por el Mediterráneo a lo largo de un año mediante el sistema AIS, realizando “fotos” del tráfico marítimo en el Mediterráneo y reportando todos los buques en navegación en días aleatorios a lo largo de todo el año 2014. Por último, y con los datos anteriores, calculamos la demanda potencial de gasóleo en el Mediterráneo. Si no se hace nada y los buques comienzan a consumir gasóleo como combustible principal, en vez del actual fuel oil para cumplir con la regulación, la demanda de gasoil en el Mediterráneo aumentará en 12,12 MTA (Millones de Toneladas Anuales) a partir del año 2020. Esto supone alrededor de 3.720 millones de dólares anuales por el incremento del gasto de combustible tomando como referencia el precio medio de los combustibles marinos durante el año 2014. El anterior incremento de demanda en el Mediterráneo supondría el 43% del total de la demanda de gasóleos en España en el año 2013, incluyendo gasóleos de automoción, biodiesel y gasóleos marinos y el 3,2% del consumo europeo de destilados medios durante el año 2014. ¿Podrá la oferta del mercado europeo asumir este incremento de demanda de gasóleos? Europa siempre ha sido excedentaria en gasolina y deficitaria en destilados medios. En el año 2009, Europa tuvo que importar 4,8 MTA de Norte América y 22,1 MTA de Asia. Por lo que, este aumento de demanda sobre la ya limitada capacidad de refino de destilados medios en Europa incrementará las importaciones y producirá también aumentos en los precios, sobre todo del mercado del gasóleo. El sector sobre el que más impactará el incremento de demanda de gasóleo será el de los cruceros que navegan por el Mediterráneo, pues consumirán un 30,4% de la demanda de combustible de toda flota mundial de cruceros, lo que supone un aumento en su gasto de combustible de 386 millones de USD anuales. En el caso de los RoRos, consumirían un 23,6% de la demanda de la flota mundial de este tipo de buque, con un aumento anual de 171 millones de USD sobre su gasto de combustible anterior. El mayor incremento de coste lo sufrirán los portacontenedores, con 1.168 millones de USD anuales sobre su gasto actual. Sin embargo, su consumo en el Mediterráneo representa sólo el 5,3% del consumo mundial de combustible de este tipo de buques. Estos números plantean la incertidumbre de si semejante aumento de gasto en buques RoRo hará que el transporte marítimo de corta distancia en general pierda competitividad sobre otros medios de transporte alternativos en determinadas rutas. De manera que, parte del volumen de mercancías que actualmente transportan los buques se podría trasladar a la carretera, con los inconvenientes medioambientales y operativos, que esto produciría. En el caso particular de España, el extra coste por el consumo de gasóleo de todos los buques con escala en algún puerto español en el año 2013 se cifra en 1.717 millones de EUR anuales, según demostramos en la última parte del capítulo 5. Para realizar este cálculo hemos analizado con el sistema AIS a todos los buques que han tenido escala en algún puerto español y los hemos clasificado por distancia navegada, tipo de buque y potencia. Este encarecimiento del transporte marítimo será trasladado al sector exterior español, lo cual producirá un aumento del coste de las importaciones y exportaciones por mar en un país muy expuesto, pues el 75,61% del total de las importaciones y el 53,64% del total de las exportaciones se han hecho por vía marítima. Las tres industrias que se verán más afectadas son aquellas cuyo valor de mercancía es inferior respecto a su coste de transporte. Para ellas los aumentos del coste sobre el total del valor de cada mercancía serán de un 2,94% para la madera y corcho, un 2,14% para los productos minerales y un 1,93% para las manufacturas de piedra, cemento, cerámica y vidrio. Las mercancías que entren o salgan por los dos archipiélagos españoles de Canarias y Baleares serán las que se verán más impactadas por el extra coste del transporte marítimo, ya que son los puertos más alejados de otros puertos principales y, por tanto, con más distancia de navegación. Sin embargo, esta no es la única alternativa al cumplimiento de la nueva regulación. De la lectura del capítulo 6 concluimos que las tecnologías de equipos scrubbers y de propulsión con GNL permitirán al buque consumir combustibles más baratos al gasoil, a cambio de una inversión en estas tecnologías. ¿Serán los ahorros producidos por estas nuevas tecnologías suficientes para justificar su inversión? Para contestar la anterior pregunta, en el capítulo 7 hemos comparado las tres alternativas y hemos calculado tanto los costes de inversión como los gastos operativos correspondientes a equipos scrubbers o propulsión con GNL para una selección de 53 categorías de buques. La inversión en equipos scrubbers es más conveniente para buques grandes, con navegación no regular. Sin embargo, para buques de tamaño menor y navegación regular por puertos con buena infraestructura de suministro de GNL, la inversión en una propulsión con GNL como combustible será la más adecuada. En el caso de un tiempo de navegación del 100% dentro de zonas ECA y bajo el escenario de precios visto durante el año 2014, los proyectos con mejor plazo de recuperación de la inversión en equipos scrubbers son para los cruceros de gran tamaño (100.000 tons. GT), para los que se recupera la inversión en 0,62 años, los grandes portacontenedores de más de 8.000 TEUs con 0,64 años de recuperación y entre 5.000-8.000 TEUs con 0,71 años de recuperación y, por último, los grandes petroleros de más de 200.000 tons. de peso muerto donde tenemos un plazo de recuperación de 0,82 años. La inversión en scrubbers para buques pequeños, por el contrario, tarda más tiempo en recuperarse llegando a más de 5 años en petroleros y quimiqueros de menos de 5.000 toneladas de peso muerto. En el caso de una posible inversión en propulsión con GNL, las categorías de buques donde la inversión en GNL es más favorable y recuperable en menor tiempo son las más pequeñas, como ferris, cruceros o RoRos. Tomamos ahora el caso particular de un buque de productos limpios de 38.500 toneladas de peso muerto ya construido y nos planteamos la viabilidad de la inversión en la instalación de un equipo scrubber o bien, el cambio a una propulsión por GNL a partir del año 2015. Se comprueba que las dos variables que más impactan sobre la conveniencia de la inversión son el tiempo de navegación del buque dentro de zonas de emisiones controladas (ECA) y el escenario futuro de precios del MGO, HSFO y GNL. Para realizar este análisis hemos estudiado cada inversión, calculando una batería de condiciones de mérito como el payback, TIR, VAN y la evolución de la tesorería del inversor. Posteriormente, hemos calculado las condiciones de contorno mínimas de este buque en concreto para asegurar una inversión no sólo aceptable, sino además conveniente para el naviero inversor. En el entorno de precios del 2014 -con un diferencial entre fuel y gasóleo de 264,35 USD/ton- si el buque pasa más de un 56% de su tiempo de navegación en zonas ECA, conseguirá una rentabilidad de la inversión para inversores (TIR) en el equipo scrubber que será igual o superior al 9,6%, valor tomado como coste de oportunidad. Para el caso de inversión en GNL, en el entorno de precios del año 2014 -con un diferencial entre GNL y gasóleo de 353,8 USD/ton FOE- si el buque pasa más de un 64,8 % de su tiempo de navegación en zonas ECA, conseguirá una rentabilidad de la inversión para inversores (TIR) que será igual o superior al 9,6%, valor del coste de oportunidad. Para un tiempo en zona ECA estimado de un 60%, la rentabilidad de la inversión (TIR) en scrubbers para los inversores será igual o superior al 9,6%, el coste de oportunidad requerido por el inversor, para valores del diferencial de precio entre los dos combustibles alternativos, gasóleo (MGO) y fuel oil (HSFO) a partir de 244,73 USD/ton. En el caso de una inversión en propulsión GNL se requeriría un diferencial de precio entre MGO y GNL de 382,3 USD/ton FOE o superior. Así, para un buque de productos limpios de 38.500 DWT, la inversión en una reconversión para instalar un equipo scrubber es más conveniente que la de GNL, pues alcanza rentabilidades de la inversión (TIR) para inversores del 12,77%, frente a un 6,81% en el caso de invertir en GNL. Para ambos cálculos se ha tomado un buque que navegue un 60% de su tiempo por zona ECA y un escenario de precios medios del año 2014 para el combustible. Po otro lado, las inversiones en estas tecnologías a partir del año 2025 para nuevas construcciones son en ambos casos convenientes. El naviero deberá prestar especial atención aquí a las características propias de su buque y tipo de navegación, así como a la infraestructura de suministros y vertidos en los puertos donde vaya a operar usualmente. Si bien, no se ha estudiado en profundidad en esta tesis, no olvidemos que el sector marítimo debe cumplir además con las otras dos limitaciones que la regulación de la OMI establece sobre las emisiones de óxidos de Nitrógeno (NOx) y Carbono (CO2) y que sin duda, requerirán adicionales inversiones en diversos equipos. De manera que, si bien las consecuencias del consumo de gasóleo como alternativa al cumplimiento de la Regulación MARPOL son ciertamente preocupantes, existen alternativas al uso del gasóleo, con un aumento sobre el coste del transporte marítimo menor y manteniendo los beneficios sociales que pretende dicha ley. En efecto, como hemos demostrado, las opciones que se plantean como más rentables desde el punto de vista financiero son el consumo de GNL en los buques pequeños y de línea regular (cruceros, ferries, RoRos), y la instalación de scrubbers para el resto de buques de grandes dimensiones. Pero, por desgracia, estas inversiones no llegan a hacerse realidad por el elevado grado de incertidumbre asociado a estos dos mercados, que aumenta el riesgo empresarial, tanto de navieros como de suministradores de estas nuevas tecnologías. Observamos así una gran reticencia del sector privado a decidirse por estas dos alternativas. Este elevado nivel de riesgo sólo puede reducirse fomentando el esfuerzo conjunto del sector público y privado para superar estas barreras de entrada del mercado de scrubbers y GNL, que lograrían reducir las externalidades medioambientales de las emisiones sin restar competitividad al transporte marítimo. Creemos así, que los mismos organismos que aprobaron dicha ley deben ayudar al sector naviero a afrontar las inversiones en dichas tecnologías, así como a impulsar su investigación y promover la creación de una infraestructura portuaria adaptada a suministros de GNL y a descargas de vertidos procedentes de los equipos scrubber. Deberían además, prestar especial atención sobre las ayudas al sector de corta distancia para evitar que pierda competitividad frente a otros medios de transporte por el cumplimiento de esta normativa. Actualmente existen varios programas europeos de incentivos, como TEN-T o Marco Polo, pero no los consideramos suficientes. Por otro lado, la Organización Marítima Internacional debe confirmar cuanto antes si retrasa o no al 2025 la nueva bajada del nivel de azufre en combustibles. De esta manera, se eliminaría la gran incertidumbre temporal que actualmente tienen tanto navieros, como empresas petroleras y puertos para iniciar sus futuras inversiones y poder estudiar la viabilidad de cada alternativa de forma individual. ABSTRACT On 10 October 2008 the International Maritime Organization (IMO) signed an amendment to Annex VI of the MARPOL 73/78 convention establishing a gradual reduction in sulphur oxide (SOx) emissions from ships, and an additional reduction in nitrogen oxide (NOx) emissions and carbon dioxide (CO2) emissions from marine engines which cause environmental problems such as acid rain and the greenhouse effect. According to this regulation, from 1 January 2015, ships travelling in an Emission Control Area (ECA) must use fuels with a sulphur content of less than 0.1%. From 1 January 2020, or alternatively from 2025 if the IMO should decide to delay its introduction, all ships must use fuels with a sulphur content of less than 0.5%. As before, this content will be 0.1%S for voyages within ECAs. Meanwhile, the European Union has gone further than the IMO, and will apply the strictest limits of the MARPOL directives in the waters of its exclusive economic zone from 2020. To this end, Directive 2012/33/EU was issued on 21 November 2013 as an addendum to the 1999 Directive. These laws are intended to improve public health and the environment, benefiting society by reducing disease, particularly respiratory problems. The first question which arises is: what fuel do ships currently use, and what fuel will they have to use to comply with the Convention? Today, large international shipping vessels consume fuel oil with a sulphur level of 3.5%. Do fuel oils exist with a sulphur level of 0.5%S? As we conclude in Chapter 4, oil companies regard marine fuel oil as a by-product of refining Brent to produce their basket of products, as the demand for fuel oil is declining in comparison to other products, and the profit margin on the sale of other petroleum products is higher. Thus, oil companies are not interested in investing in their refineries to produce low-sulphur fuel oils, and if a company should decide to invest in producing a 0.5%S fuel oil, its price would have to be very similar to that of marine gas oil in order to recoup the investment. Therefore, the only fuel which presently complies with the new levels required by the IMO is marine gas oil, which was priced on average 307 USD/tonne higher than current fuel oils during 2014. This higher purchasing price for fuel will have a direct impact on the cost of maritime transport. The entry into force of the above directive presents a challenge for the entire maritime sector. There are various alternative approaches to this situation, with different technical, operational and financial implications. At present three options are the most widespread in the sector. The first option consists of “doing nothing” and simply switching from fuel oil to marine gas oil in large ships. The second option is installing a scrubber system, which would enable ships to continue consuming fuel oil, cleaning the combustion gases before they are released to the atmosphere. And finally, the third option is using Liquefied Natural Gas (LNG), which is priced lower than marine gas oil, as a fuel. However, there is still significant uncertainty on future variations in prices, the operation and maintenance of the new technologies, the investments required, the availability of port infrastructure and even future developments in the international regulations themselves. These uncertainties mean that none of these three alternatives has been unanimously accepted by the sector. In this Thesis, after discussing all the regulations applicable to the sector in Chapter 3, we investigate their consequences. In Chapter 4 we examine whether there are currently any marine fuels on the market which meet the new sulphur limits, and if not, how much new fuels would cost. In Chapter 5, based on the hypothesis that all ships will switch from fuel oil to marine gas oil to comply with the regulations, we calculate the increase in demand for marine gas oil this would lead to, and analyse the consequences this would have on marine gas oil production in the Mediterranean. We also calculate the economic impact such a cost increase would have on Spain's external sector. To do this, we also use the Automatic Identification System (AIS) system to analyse the data of every ship stopping in any Spanish port, in order to calculate the extra cost of using marine gas oil in maritime transport for all Spain's imports and exports. Finally, in Chapter 6, we examine and compare the other two alternatives to marine gas oil, scrubbers and LNG, and in Chapter 7 we analyse the viability of investing in these two technologies in order to comply with the regulations. In Chapter 5 we explain the many existing methods for calculating a ship's fuel consumption. We use a bottom-up calculation method, based on aggregating the activity and characteristics of each type of vessel. The result is based on the installed engine power of each ship, the engine load percentage and its specific consumption. To do this, we analyse the number of ships travelling in the Mediterranean in the course of one year, using the AIS, a marine traffic monitoring system, to take “snapshots” of marine traffic in the Mediterranean and report all ships at sea on random days throughout 2014. Finally, with the above data, we calculate the potential demand for marine gas oil in the Mediterranean. If nothing else is done and ships begin to use marine gas oil instead of fuel oil in order to comply with the regulation, the demand for marine gas oil in the Mediterranean will increase by 12.12 MTA (Millions Tonnes per Annum) from 2020. This means an increase of around 3.72 billion dollars a year in fuel costs, taking as reference the average price of marine fuels in 2014. Such an increase in demand in the Mediterranean would be equivalent to 43% of the total demand for diesel in Spain in 2013, including automotive diesel fuels, biodiesel and marine gas oils, and 3.2% of European consumption of middle distillates in 2014. Would the European market be able to supply enough to meet this greater demand for diesel? Europe has always had a surplus of gasoline and a deficit of middle distillates. In 2009, Europe had to import 4.8 MTA from North America and 22.1 MTA from Asia. Therefore, this increased demand on Europe's already limited capacity for refining middle distillates would lead to increased imports and higher prices, especially in the diesel market. The sector which would suffer the greatest impact of increased demand for marine gas oil would be Mediterranean cruise ships, which represent 30.4% of the fuel demand of the entire world cruise fleet, meaning their fuel costs would rise by 386 million USD per year. ROROs in the Mediterranean, which represent 23.6% of the demand of the world fleet of this type of ship, would see their fuel costs increase by 171 million USD a year. The greatest cost increase would be among container ships, with an increase on current costs of 1.168 billion USD per year. However, their consumption in the Mediterranean represents only 5.3% of worldwide fuel consumption by container ships. These figures raise the question of whether a cost increase of this size for RORO ships would lead to short-distance marine transport in general becoming less competitive compared to other transport options on certain routes. For example, some of the goods that ships now carry could switch to road transport, with the undesirable effects on the environment and on operations that this would produce. In the particular case of Spain, the extra cost of switching to marine gas oil in all ships stopping at any Spanish port in 2013 would be 1.717 billion EUR per year, as we demonstrate in the last part of Chapter 5. For this calculation, we used the AIS system to analyse all ships which stopped at any Spanish port, classifying them by distance travelled, type of ship and engine power. This rising cost of marine transport would be passed on to the Spanish external sector, increasing the cost of imports and exports by sea in a country which relies heavily on maritime transport, which accounts for 75.61% of Spain's total imports and 53.64% of its total exports. The three industries which would be worst affected are those with goods of lower value relative to transport costs. The increased costs over the total value of each good would be 2.94% for wood and cork, 2.14% for mineral products and 1.93% for manufactured stone, cement, ceramic and glass products. Goods entering via the two Spanish archipelagos, the Canary Islands and the Balearic Islands, would suffer the greatest impact from the extra cost of marine transport, as these ports are further away from other major ports and thus the distance travelled is greater. However, this is not the only option for compliance with the new regulations. From our readings in Chapter 6 we conclude that scrubbers and LNG propulsion would enable ships to use cheaper fuels than marine gas oil, in exchange for investing in these technologies. Would the savings gained by these new technologies be enough to justify the investment? To answer this question, in Chapter 7 we compare the three alternatives and calculate both the cost of investment and the operating costs associated with scrubbers or LNG propulsion for a selection of 53 categories of ships. Investing in scrubbers is more advisable for large ships with no fixed runs. However, for smaller ships with regular runs to ports with good LNG supply infrastructure, investing in LNG propulsion would be the best choice. In the case of total transit time within an ECA and the pricing scenario seen in 2014, the best payback periods on investments in scrubbers are for large cruise ships (100,000 gross tonnage), which would recoup their investment in 0.62 years; large container ships, with a 0.64 year payback period for those over 8,000 TEUs and 0.71 years for the 5,000-8,000 TEU category; and finally, large oil tankers over 200,000 deadweight tonnage, which would recoup their investment in 0.82 years. However, investing in scrubbers would have a longer payback period for smaller ships, up to 5 years or more for oil tankers and chemical tankers under 5,000 deadweight tonnage. In the case of LNG propulsion, a possible investment is more favourable and the payback period is shorter for smaller ship classes, such as ferries, cruise ships and ROROs. We now take the case of a ship transporting clean products, already built, with a deadweight tonnage of 38,500, and consider the viability of investing in installing a scrubber or changing to LNG propulsion, starting in 2015. The two variables with the greatest impact on the advisability of the investment are how long the ship is at sea within emission control areas (ECA) and the future price scenario of MGO, HSFO and LNG. For this analysis, we studied each investment, calculating a battery of merit conditions such as the payback period, IRR, NPV and variations in the investors' liquid assets. We then calculated the minimum boundary conditions to ensure the investment was not only acceptable but advisable for the investor shipowner. Thus, for the average price differential of 264.35 USD/tonne between HSFO and MGO during 2014, investors' return on investment (IRR) in scrubbers would be the same as the required opportunity cost of 9.6%, for values of over 56% ship transit time in ECAs. For the case of investing in LNG and the average price differential between MGO and LNG of 353.8 USD/tonne FOE in 2014, the ship must spend 64.8% of its time in ECAs for the investment to be advisable. For an estimated 60% of time in an ECA, the internal rate of return (IRR) for investors equals the required opportunity cost of 9.6%, based on a price difference of 244.73 USD/tonne between the two alternative fuels, marine gas oil (MGO) and fuel oil (HSFO). An investment in LNG propulsion would require a price differential between MGO and LNG of 382.3 USD/tonne FOE. Thus, for a 38,500 DWT ship carrying clean products, investing in retrofitting to install a scrubber is more advisable than converting to LNG, with an internal rate of return (IRR) for investors of 12.77%, compared to 6.81% for investing in LNG. Both calculations were based on a ship which spends 60% of its time at sea in an ECA and a scenario of average 2014 prices. However, for newly-built ships, investments in either of these technologies from 2025 would be advisable. Here, the shipowner must pay particular attention to the specific characteristics of their ship, the type of operation, and the infrastructure for supplying fuel and handling discharges in the ports where it will usually operate. Thus, while the consequences of switching to marine gas oil in order to comply with the MARPOL regulations are certainly alarming, there are alternatives to marine gas oil, with smaller increases in the costs of maritime transport, while maintaining the benefits to society this law is intended to provide. Indeed, as we have demonstrated, the options which appear most favourable from a financial viewpoint are conversion to LNG for small ships and regular runs (cruise ships, ferries, ROROs), and installing scrubbers for large ships. Unfortunately, however, these investments are not being made, due to the high uncertainty associated with these two markets, which increases business risk, both for shipowners and for the providers of these new technologies. This means we are seeing considerable reluctance regarding these two options among the private sector. This high level of risk can be lowered only by encouraging joint efforts by the public and private sectors to overcome these barriers to entry into the market for scrubbers and LNG, which could reduce the environmental externalities of emissions without affecting the competitiveness of marine transport. Our opinion is that the same bodies which approved this law must help the shipping industry invest in these technologies, drive research on them, and promote the creation of a port infrastructure which is adapted to supply LNG and handle the discharges from scrubber systems. At present there are several European incentive programmes, such as TEN-T and Marco Polo, but we do not consider these to be sufficient. For its part, the International Maritime Organization should confirm as soon as possible whether the new lower sulphur levels in fuels will be postponed until 2025. This would eliminate the great uncertainty among shipowners, oil companies and ports regarding the timeline for beginning their future investments and for studying their viability.
Resumo:
Esta tesis tiene como objetivo actualizar los criterios de proyecto de los buques cableros, analizando las nuevas tendencias en el uso de este tipo de barcos. Se estudian las operaciones realizadas para la instalación y reparación de los cables submarinos. Del estudio de estas técnicas se extraen unos requisitos para el proyecto. Se comprueba cómo han evolucionado a lo largo de la historia las características de los buques cableros. Comparando esta evolución con las características necesarias extraídas del estudio de las operaciones de cables, se concluyen los aspectos fundamentales a tener en cuenta por los ingenieros navales en el proyecto de estos buques cableros. Se presentan: datos concretos para el dimensionamiento, equipamiento, distribución y disposición general; soluciones utilizadas y desarrolladas por el autor para la configuración del manejo del cable de tiro del arado submarino; y se propone una disposición general más acorde con las necesidades modernas de uso de estos barcos. Todo está basado en la experiencia del autor de más de 20 años operando buques cableros de la empresa Transoceanic Cableship Company, Ltd.1 y TE Conectivity SubCom SL (antes TEMASA2), ambas filiales de la empresa norteamericana de telecomunicaciones submarinas TE SubCom, por ello su utilidad práctica queda garantizada. ABSTRACT The goal of this thesis is to update the design criteria applied to cableships by analyzing the new trends in the use of this type of ships. The methods of procedure for the installation and repair of fiber optic submarine cables are also explored. The study of these techniques draws conclusions regarding the design requirements. The evolution of the characteristics of the cableships throughout the history is also approached. The primary aspect that has to be taken into account by the naval architect is also stated, when comparing the evolution and the necessary requirements extracted from the study of cable operations. Specific data for dimensioning, outfitting, distribution and arrangement are presented, as well as solutions found and developed by the author for the tow wire handling configuration. Furthermore, a new general arrangement more in line with the modern needs for the purpose of these ships is suggested. Everything is based in the author´s experience of over twenty years in the operation of cableships owned by Transoceanic Cableship Company Ltd. and TE Connectivity SubCom SL (formerly called TEMASA), both subsidiaries of the US based company TE SubCom. For this reason, the practical value of the study is guaranteed.
Resumo:
La “Actuación en la Crisis”, objetivo principal de esta tesis, trata de establecer y concretar los procedimientos y apoyos desde tierra y a bordo de los buques, tanto técnicos como operacionales, a seguir por el Capitán y tripulación de un buque después de un accidente, en especial cuando el buque tiene un riesgo importante de hundimiento o necesidad de abandono. La aparición de este concepto es relativamente reciente, es decir desde el año 1995, después de los estudios y propuestas realizados, por el Panel de Expertos de IMO, como consecuencia del hundimiento del buque de pasaje y carga rodada, Estonia, en el que perdieron la vida más de 850 personas a finales de Septiembre de 1994. Entre las propuestas recomendadas y aceptadas por los gobiernos en la Conferencia Internacional SOLAS 1995, figuraba este concepto novedoso, que luego fue adoptado de una forma generalizada para todos los tipos de buques, que hasta entonces sólo disponían de documentos dispersos y a veces contradictorios para la actuación en estos momentos de peligro, que dio lugar a un profundo tratamiento de este problema, que iba a afectar a los buques, tanto en los conceptos y parámetros de proyecto, como a la propia operación del buque. La tesis desarrolla los fundamentos, estado del arte, implantación y consecuencias sobre la configuración y explotación del buque, que han dado lugar a una serie de documentos, que se han incluido en diversos Convenios Internacionales, Códigos y otros documentos de obligada aplicación en la industria naval generados en IMO (SOLAS, Retorno Seguro a Puerto, Plano y Libro de Control de Averías, ISM). La consecuencia más novedosa e interesante de este concepto ha sido la necesidad de disponer cada compañía explotadora del buque, de un servicio importante de “apoyo en la crisis”, que ha dado lugar a implantar un “servicio de emergencia especial”, disponible las 24 horas del día y 365 de año que ofrecen las Sociedades de Clasificación. El know-how de los accidentes que tratan estos servicios, hacen que se puedan establecer ciertas recomendaciones, que se centran, en que el buque tenga, por sus propios medios, una posibilidad de aumentar el KM después de una avería, la garantía de la resistencia estructural adecuada y el aumento del tiempo de hundimiento o el tiempo de mantenimiento a flote (otro tipo de averías vinculadas con la maquinaria, equipo o protección y lucha contra incendios, no son objeto de tesis). Las conclusiones obtenidas, son objeto de discusión especialmente en IACS e IMO, con el fin de establecer las aplicaciones pertinentes, que permitan dar al buque una mayor seguridad. Como objetivo principal de esta tesis es establecer estos puntos de mejora consecuencia de esta actuación en la crisis, con la aportación de varias soluciones que mejorarían los problemas mencionados para los tres tipos de buques que consideramos más importantes (pasaje, petroleros y bulkcarriers) La tesis recorre, desde el principio en 1995, la evolución de esta actuación en la crisis, hasta el momento actual., los puntos básicos que se establecen, que van muy de la mano de la llamada “cultura de seguridad”, objetivo nacido durante los años 90, con el fin de implantar una filosofía distinta para abordar el tratamiento de la seguridad del buque, a la que se venía aplicando hasta el momento, en donde se contemplaba tratar el tema de forma singular y específica para cada caso. La nueva filosofía, trataba de analizar el problema, desde un aspecto global y por tanto horizontal, realizando un estudio exhaustivo de las consecuencias que tendría la aplicación de una nueva medida correctora, en los restantes equipos y sistemas del buque., relativos al proyecto, configuración, operación y explotación del buque. Se describen de manera sucinta las profundas investigaciones a que dio lugar todo lo anterior, estando muchas de ellas, vinculadas a grandes proyectos europeos. La mayor parte de estos proyectos fueron subvencionados por la Comunidad Económica Europea durante la primera década del siglo actual. Dentro de estas investigaciones, donde hay que destacar la participación de todos los agentes del sector marítimo europeo, se hacen imprescindibles la utilización de dos herramientas novedosas para nuestro sector, como son el “Estudio de Riesgos” y la “Evaluación de la Seguridad”, más conocida técnicamente por su nombre ingles “Safety Assessment”, cuyos principios también son incluidos en la tesis. Además se especifican las bases sobre las que se establecen la estabilidad intacta y en averías, con nuevos conceptos, no tratados nunca hasta entonces, como la “altura crítica de agua en cubierta” para la cual el buque se hundiría sin remisión, “estado de la mar” en la que se puede encontrar el buque averiado, el cálculo del tiempo de hundimiento, u otros aspectos como el corrimiento de la carga, o bien el tratamiento de los problemas dinámicos en el nuevo “Código de Estabilidad Intacta”. Con respecto a la resistencia estructural, especialmente el estudio de la “resistencia estructural después de la avería”, que tiene en cuenta el estado de la mar en la que se encontraría el buque afectado. Se analizan los tipos de buques mencionados uno por uno y se sacan, como aportación fundamental de esta tesis, separadamente, las acciones y propuestas a aplicar a estos buques. En primer lugar, las relativas al proyecto y configuración del buque y en segundo lugar, las de operación, explotación y mantenimiento, con el fin de acometer, con garantías de éxito, la respuesta a la ayuda en emergencia y la solución a la difícil situación que pueden tener lugar en condiciones extremas. Para ver el efecto de algunas de las propuestas que se incluyen, se realizan y aplican concretamente, a un buque de pasaje de carga rodada, a un petrolero y a un bulkcarrier, para demostrar el mejor comportamiento de estos buques en situación de emergencia. Para ello se han elegido un buque ejemplo para cada tipo, efectuándose los cálculos de estabilidad y resistencia longitudinal y comparar la situación, en la que quedaría el buque averiado, antes y después de la avería. La tesis se completa con una estadística real de buques averiados de cada uno de estos tres tipos, distinguiendo el tipo de incidente y el número de los buques que lo han sufrido, considerándose como más importantes los incidentes relacionados con varadas, colisiones y fuego resumiéndose lo más relevante de esta aportación también importante de esta tesis. ABSTRACT The "Response in an emergency" is the main objective of this thesis, it seeks to establish and define procedures for technical and operational support onboard and shore, to be followed by the captain and crew on of a ship after an accident, especially when the ship has a significant risk of sinking or a need to abandon it. The emergence of this concept is relatively recent, in 1995, after studies and proposals made by the Panel of Experts IMO, following the sinking of the “Estonia” vessel, where more than 850 people died in late September 1994. In the International Convention SOLAS 1995, among the recommended proposals and accepted regulations, this new concept was included, which was later adopted for all types of ships which until then had only scattered some documents, sometimes including contradictory actions in emergency situations. This led to a profound treatment of this problem, which would affect the vessels in both the concepts and design parameters, as to the proper operation of the vessel. The thesis develops the foundations, state of the art, implementation and consequences on the design and operation of the vessel, this has led to a series of Circulars and Regulations included in several International Codes and Conventions issued by IMO which are required to be complied with (SOLAS Safe Return to Port, Damage Control Plan and Booklet, ISM). The most novel and interesting consequence of this concept has been the need for every company operating the ship to have a shore based support service in emergency situations which has led to implement special emergency services offered by Class Societies which are available 24 hours a day, 365 days per year. The know-how of these services dealing with all types of accidents can establish certain recommendations, which focus on the ship capability to increase the KM after damage. It can also be determined adequate structural strength and the increase of the capsizing time or time afloat (other types of damages associated with the machinery, equipment or firefighting, are not the subject of this thesis). The conclusions are discussed especially in IACS and IMO, in order to establish appropriate applications to improve the security of the vessels. The main objective of this thesis is to establish actions to improve emergency actions, resulting from different responses in the crisis, with the contribution of several solutions that improve the problems mentioned for three types of ships that we consider most important (passenger vessels, tankers and bulk carriers) The thesis runs from the beginning in 1995 to date, the evolution of the response on the crisis. The basics established during the 90s with the "safety culture" in order to implement a different philosophy to address the treatment of the safety of the ship, which was being previously implemented, as something singular and specific to each case. The new philosophy tried to analyse the problem from a global perspective, doing an exhaustive study of the consequences of the implementation of the new regulation in the ship systems and equipment related to the design, configuration and operation of the vessel. Extensive investigations which led to the above are described, many of them being linked to major European projects. Most of these projects were funded by the European Union during the first decade of this century. Within these investigations, which it must be highlighted the participation of all players in the European maritime sector, a necessity to use two new tools for our industry, such as the "Risk Assessment" and "Safety Assessment" whose principles are also included in the thesis. The intact and damage stability principles are established including new concepts, never treated before, as the "critical height of water on deck" for which the ship would sink without remission, "sea state" where the damaged vessel can be found, calculation of capsizing time, or other aspects such cargo shifting or treatment of dynamic problems in the new Intact Stability Code in development. Regarding the structural strength, it has to be especially considered the study of the "residual strength after damage", which takes into account the state of the sea where the vessel damaged can be found. Ship types mentioned are analysed one by one, as a fundamental contribution of this thesis, different actions and proposals are established to apply to these types of vessels. First, those ones relating to the design and configuration of the vessel and also the ones related to the operation and maintenance in order to support successfully responses to emergency situations which may occur in extreme situations. Some of the proposals are applied specifically to a RoRo passenger ship, an oil tanker and a bulkcarrier, to demonstrate the improved performance of these vessels damaged. An example for each type vessel has been chosen, carrying out stability and longitudinal strength calculations comparing the situation of the ship before and after damage. The thesis is completed with incidents statics for each of these three types, distinguishing the type of incident and the number of ships having it. The most important incidents considered are the ones related to groundings, collisions and fire being this other relevant contribution of this thesis.
Resumo:
Durante los últimos años, la construcción de grandes yates ha evolucionado hacia conceptos y diseños más complejos dónde se ha priorizado en muchas ocasiones la estética arquitectónica y exigencias de confort de los armadores y operadores dejando en segundo plano aspectos clave de seguridad. Diferentes Organismos Internacionales y las Sociedades de Clasificación han venido adaptando sus requisitos a la problemática específica de este tipo de buques, tratando de compatibilizar tendencias de diseño con exigencias de resistencia, integridad estructural, estanqueidad y seguridad entre otras. En la actualidad, la construcción de grandes yates con esloras incluso por encima de los 100 metros, el aumento del número de pasajeros por encima del límite tradicional de 12, las nuevas tendencias de ahorro energético y protección medioambiental que se están implantando en la industria en general y marítima en particular, plantean una serie de desafíos tanto a los diseñadores como a las Sociedades de Clasificación que deben avanzar en sus reglamentaciones para cubrir estos y otros aspectos. Son precisamente estos aspectos medioambientales, tradicionalmente relegados en la industria de grandes yates los que están ocupando en la actualidad un primer plano en los desarrollos de normativa de diferentes Organismos Internacionales y Nacionales. El impacto que estas nuevas normativas van a tener sobre el diseño de grandes yates a motor centra el desarrollo de esta Tesis. Hasta donde ha podido conocer el doctorando, esta es la primera vez que en una Tesis Doctoral se abordan los principales mecanismos que regulan el diseño y la construcción de grandes yates a motor, se estudian y analizan las regulaciones internacionales en materia de protección medioambiental y de eficiencia energética aplicables a los yates, se seleccionan y describen un conjunto de tecnologías maduras de carácter medioambiental, susceptibles de ser empleadas en yates y se determina los parámetros y aspectos del diseño a aplicar al proyecto de grandes yates a motor como resultado de la aplicación de estas tecnologías, analizados bajo la perspectiva de la Sociedad de Clasificación y de los Organismos Internacionales. La Tesis comienza con un análisis de la industria de construcción de grandes yates, la flota existente de grandes yates, la cartera actual de pedidos y la evolución esperada del mercado. Aquí se pone de manifiesto que a pesar de la crisis económica global de los últimos años, este mercado goza relativamente de buena salud y las previsiones son favorables, particularmente para el sector en Europa. A continuación se aborda el estado del arte del diseño de yate grande, sus peculiaridades, particularmente estructurales y de armamento, que le diferencian de otros tipos de buques y las tendencias en su diseño. Se pone de manifiesto cómo el proyecto de estos yates ha evolucionado hacia yates de gran tamaño y complejidad técnica, debido a la demanda y necesidades actuales y cómo ha influido en aspectos como la disposición estructural. Seguidamente se describen los principales mecanismos que regulan el diseño y construcción de grandes yates, particularmente el Código de Grandes Yates Comerciales de la Maritime & Coastguard Agency del Reino Unido, y las Reglas y Reglamentos de la Sociedad de Clasificación Lloyd’s Register para la Clasificación de yates; por ser ambas organizaciones las que lideran el Registro y la Clasificación respectivamente de este tipo de buques, objeto del estudio. El doctorando ejerce su actividad profesional como inspector de Lloyd’s Register en una oficina técnica de apoyo y evaluación de diseño, siendo especialista en grandes yates, lo que ha permitido exponer de primera mano el punto de vista de la Sociedad de Clasificación. En el siguiente Capítulo se describen las principales reglamentaciones internacionales de carácter medioambiental que afectan al diseño, construcción y operación de los yates, algunas de las cuales, como es el caso del Convenio Internacional para el Control y la Gestión del Agua de Lastre y Sedimentos de los buques (BWM 2004) aún no ha entrado en vigor a la fecha de terminación de esta Tesis. Seguidamente se realiza una selección de tecnologías desde el punto de vista de protección medioambiental y ahorro energético y su aplicación al diseño y construcción de grandes yates. Algunas de estas tecnologías son maduras y ya habían sido utilizadas con éxito en otros tipos de buques, pero su aplicación a los yates entraña ciertos desafíos que se describen en este Capítulo. A continuación se determinan y analizan los principales parámetros de diseño de los yates grandes a motor como consecuencia de las tecnologías estudiadas y se indican una serie de aspectos de diseño bajo la perspectiva de la Sociedad de Clasificación y de los Organismos Marítimos Internacionales. Finalmente se llega a una serie de conclusiones y se identifican futuras líneas de investigación en relación a las tecnologías descritas en este trabajo. ABSTRACT In recent years, the building of large yachts has evolved into more complex concepts and designs where often prioritized architectural aesthetics and comfort requirements of owners and operators leaving in the background key security aspects. Several international organizations and classification societies have been adapting their requirements to the specific problems of this type of vessel, trying to reconcile demands design trends with resistance, structural integrity, watertightness and safety among others. At present, the building of large yachts with lengths even above 100 meters, the increase in passenger numbers over the traditional limit of 12, new trends of energy saving and environmental protection are being implemented in the marine industry in particular, they pose a number of challenges to both designers and classification societies that should update and improve their regulations to cover these and other aspects. It is precisely these environmental issues, traditionally relegated to the large yacht industry, which are currently occupying center stage in the development of rules of different international and national bodies. The impact that these new standards will have on the design of large motor yachts focuses the development of this thesis. As far as it is known, this is the first time in a doctoral thesis the main mechanisms regulating the design and construction of large motor yachts are addressed, the international regulations on environmental protection and energy efficiency requirements for yachts are studied and analyzed, a set of mature environmental technologies, capable of being applied to yachts are selected and described, the parameters and design aspects to be applied to large yacht projects as a result of the application of these technologies are determined and analyzed from the perspective of the Classification Society and international organizations. The thesis begins with an analysis of the shipbuilding industry of large yachts, the existing fleet of large yachts, the current backlog and the expected market developments. Here it becomes clear that despite the global economic crisis of recent years, this market enjoys relatively good health and prospects are favorable, particularly for the sector in Europe. Then the state of the art of large yacht design, its peculiarities, particularly structural and outfitting, that differentiate it from other types of ships and trends in design is discussed. It shows how the project of these yachts has evolved to large yachts and technical complexity, due to the demand and needs and how it has influenced the structural arrangement aspects. Then the main mechanisms regulating the design and construction of large yachts, particularly the Large Commercial Yacht Code developed by the Maritime & Coastguard Agency (UK) and the Lloyd’s Register Rules & Regulations for the Classification of Special Service Craft including yachts are described; the two organizations to be leading the registration and classification respectively of such vessels under study. The doctoral student practices his profession as a senior specialist to Lloyd’s Register in a technical support office, dealing with the design assessment of large yachts, which allowed exposing firsthand view of the Classification Society. In the next chapter describes the main international environmental regulations, affecting the design, construction and operation of yachts, some of which, such as the International Convention for the Control and Management of Ships' Ballast Water and Sediments (BWM 2004) has not yet entered into force at the date of completion of this thesis. Following is a selection of technologies from the point of view of environmental protection and energy saving and its application to design and construction of large yachts. Some of these technologies are mature and have already been used successfully in other ship types, but their application to yachts entails certain challenges that are described in this chapter. Then identifies and analyzes the main design parameters of large motor yachts as a result of the technologies studied and a number of design aspects are given from the perspective of Classification Society and international maritime organizations. Finally, a number of conclusions are exposed, and future research is identified in relation to the technologies described in this Thesis.
Resumo:
La retirada de los aviones Harrier, en servicio en operaciones embarcadas con Armadas de diferentes países, está basada en la perspectiva de poder sustituirlos por el F-35B, versión de operación vertical del controvertido programa Joint Strike Fighter. Este proyecto en realidad engloba el diseño de tres aviones de combate muy distintos entre sí, que, a pesar de tener una considerable parte en común, y dados sus muy diferentes requisitos, es un proyecto tremendamente complejo. Como consecuencia de todo esto, y ante el sobrecoste y los continuos retrasos acumulados en el desarrollo de un proyecto tan ambicioso, se plantean numerosas incertidumbres temporales y económicas, que hacen atractivo el estudio de posibles alternativas de menor riesgo. Esta tesis es un trabajo de investigación tecnológica que plantea el estudio de la modificación de determinados diseños de aviones de combate de operación terrestre, con idea de que puedan satisfacer los exigentes requisitos de operación desde un buque. Tras estudiar las peculiaridades de dichas operaciones, y analizar los tipos de buque y sus necesidades de modificación asociadas más importantes, se propone qué acciones a realizar, y se identifican las áreas de mayor interés, permitiendo establecer un procedimiento objetivo de comparación, con el fin de poder seleccionar los potenciales candidatos para su adaptación. Se aplica esta metodología, en particular, a dos casos de diseño de especial interés; el Eurofighter Typhoon y el Saab Gripen. En ambos, y por lo que respecta a las modificaciones planteadas, no se aprecian especiales dificultades que permitan descartar las posibilidades técnicas de su adaptación. Por último, y dada la complejidad de la consecución del objetivo final, se sugieren posibles líneas de investigación, desde completar y extender la filosofía de trabajo a otros subsistemas, al análisis de los costes de las modificaciones. ABSTRACT The Harrier fleet has been in active service in several Navies from different countries as a carrier-based aircraft. However, this aircraft may be withdrawn and replaced by the F-35B, a vertical capability version of the controversial Joint Strike Fighter (JSF) programme, which great complexity and constant development delays raise numerous uncertainties from a temporal and economical point of view. In fact, this program encompasses the design of three different fighter aircraft which, at the same time, share many similarities. All these aspects led us to undertake the analysis of other lower-risk alternatives. This thesis is a technological research work aimed at studying those design changes required for several fighter aircraft, initially designed for ground operation, in order to make them fullfil the highly demanding requirements for operating from aircraft carriers. After analizing the peculiarities of such operations, and studying different types of ships as well as their most significant modifications, specific actions to undertake are proposed, and those areas of greatest interest are identified, for the purposes of establishing an objective comparison procedure, and selecting potential candidates for this adaptation. This methodology is applied to design two specific cases of particular concern: the Eurofighter Typhoon and the Saab Gripen. In both instances, no major problems have been encountered regarding the modifications suggested. Finally, given the complexity of the analysis performed, some future research lines are outlined such as completing and extending this methodology to other subsystems, and giving an initial estimate of the modification costs.
Resumo:
The main focus of this paper is on hydrodynamic modelling of a semisubmersible platform (which can support a 1.5MW wind turbine and is composed by three buoyant columns connected by bracings) with especial emphasis on the estimation of the wave drift components and their effects on the design of the mooring system. Indeed, with natural periods of drift around 60 seconds, accurate computation of the low-frequency second-order components is not a straightforward task. As methods usually adopted when dealing with the slow-drifts of deep-water moored systems, such as Newman?s approximation, have their errors increased by the relatively low resonant periods, and as the effects of depth cannot be ignored, the wave diffraction analysis must be based on full Quadratic Transfer Functions (QTF) computations. A discussion on the numerical aspects of performing such computations is presented, making use of the second-order module available with the seakeeping software WAMIT®. Finally, the paper also provides a preliminary verification of the accuracy of the numerical predictions based on the results obtained in a series of model tests with the structure fixed in bichromatic waves.
Resumo:
Análisis de la atenuación del oleaje por un carguero funcionando como dique flotante y aplicación a dos casos de protección portuaria y costera. The effectiveness of a bulk carrier working as a detached floating breakwater to protect a stretch of coast and form salients or tombolos is assessed in this paper. Experiments were conducted in the Madrid CEDEX facilities in a 30 m long, 3 m wide, 1/150 scale flume. The bulk carrier ship is 205 m long, 29 m wide and 18 m in height with a draught of 13 m, and has been subjected to irregular waves with significant heights from 2 m to 4 m and peak periods from 6 s to 12 s at a depth of 15 m, all prototype dimensions. Three probes were placed between the wave paddle and the ship to record incident and reflected waves and four probes were placed between the ship and the coastline to measure the transmitted waves. Transmission, reflection and dissipation coefficients (Ct, Cr, Cd) were calculated to determine wave attenuation. Results show good shelter in the lee of the ship with values of Ct under 0.5 for peak periods from 6 s to 11 s. In addition, forces on the mooring chains were measured showing maximum values of about 2000 tons at a 10 speak period. Finally, two analytical models were used to determine the shoreline’s response to the ship’s protection and to assess the possible forming of salients or tombolos. According to the results, salients - but not tombolos - are formed in all tests.
Resumo:
El cálculo de cargas de aerogeneradores flotantes requiere herramientas de simulación en el dominio del tiempo que consideren todos los fenómenos que afectan al sistema, como la aerodinámica, la dinámica estructural, la hidrodinámica, las estrategias de control y la dinámica de las líneas de fondeo. Todos estos efectos están acoplados entre sí y se influyen mutuamente. Las herramientas integradas se utilizan para calcular las cargas extremas y de fatiga que son empleadas para dimensionar estructuralmente los diferentes componentes del aerogenerador. Por esta razón, un cálculo preciso de las cargas influye de manera importante en la optimización de los componentes y en el coste final del aerogenerador flotante. En particular, el sistema de fondeo tiene gran impacto en la dinámica global del sistema. Muchos códigos integrados para la simulación de aerogeneradores flotantes utilizan modelos simplificados que no consideran los efectos dinámicos de las líneas de fondeo. Una simulación precisa de las líneas de fondeo dentro de los modelos integrados puede resultar fundamental para obtener resultados fiables de la dinámica del sistema y de los niveles de cargas en los diferentes componentes. Sin embargo, el impacto que incluir la dinámica de los fondeos tiene en la simulación integrada y en las cargas todavía no ha sido cuantificada rigurosamente. El objetivo principal de esta investigación es el desarrollo de un modelo dinámico para la simulación de líneas de fondeo con precisión, validarlo con medidas en un tanque de ensayos e integrarlo en un código de simulación para aerogeneradores flotantes. Finalmente, esta herramienta, experimentalmente validada, es utilizada para cuantificar el impacto que un modelos dinámicos de líneas de fondeo tienen en la computación de las cargas de fatiga y extremas de aerogeneradores flotantes en comparación con un modelo cuasi-estático. Esta es una información muy útil para los futuros diseñadores a la hora de decidir qué modelo de líneas de fondeo es el adecuado, dependiendo del tipo de plataforma y de los resultados esperados. El código dinámico de líneas de fondeo desarrollado en esta investigación se basa en el método de los Elementos Finitos, utilizando en concreto un modelo ”Lumped Mass” para aumentar su eficiencia de computación. Los experimentos realizados para la validación del código se realizaron en el tanque del École Céntrale de Nantes (ECN), en Francia, y consistieron en sumergir una cadena con uno de sus extremos anclados en el fondo del tanque y excitar el extremo suspendido con movimientos armónicos de diferentes periodos. El código demostró su capacidad para predecir la tensión y los movimientos en diferentes posiciones a lo largo de la longitud de la línea con gran precisión. Los resultados indicaron la importancia de capturar la dinámica de las líneas de fondeo para la predicción de la tensión especialmente en movimientos de alta frecuencia. Finalmente, el código se utilizó en una exhaustiva evaluación del efecto que la dinámica de las líneas de fondeo tiene sobre las cargas extremas y de fatiga de diferentes conceptos de aerogeneradores flotantes. Las cargas se calcularon para tres tipologías de aerogenerador flotante (semisumergible, ”spar-buoy” y ”tension leg platform”) y se compararon con las cargas obtenidas utilizando un modelo cuasi-estático de líneas de fondeo. Se lanzaron y postprocesaron más de 20.000 casos de carga definidos por la norma IEC 61400-3 siguiendo todos los requerimientos que una entidad certificadora requeriría a un diseñador industrial de aerogeneradores flotantes. Los resultados mostraron que el impacto de la dinámica de las líneas de fondeo, tanto en las cargas de fatiga como en las extremas, se incrementa conforme se consideran elementos situados más cerca de la plataforma: las cargas en la pala y en el eje sólo son ligeramente modificadas por la dinámica de las líneas, las cargas en la base de la torre pueden cambiar significativamente dependiendo del tipo de plataforma y, finalmente, la tensión en las líneas de fondeo depende fuertemente de la dinámica de las líneas, tanto en fatiga como en extremas, en todos los conceptos de plataforma que se han evaluado. ABSTRACT The load calculation of floating offshore wind turbine requires time-domain simulation tools taking into account all the phenomena that affect the system such as aerodynamics, structural dynamics, hydrodynamics, control actions and the mooring lines dynamics. These effects present couplings and are mutually influenced. The results provided by integrated simulation tools are used to compute the fatigue and ultimate loads needed for the structural design of the different components of the wind turbine. For this reason, their accuracy has an important influence on the optimization of the components and the final cost of the floating wind turbine. In particular, the mooring system greatly affects the global dynamics of the floater. Many integrated codes for the simulation of floating wind turbines use simplified approaches that do not consider the mooring line dynamics. An accurate simulation of the mooring system within the integrated codes can be fundamental to obtain reliable results of the system dynamics and the loads. The impact of taking into account the mooring line dynamics in the integrated simulation still has not been thoroughly quantified. The main objective of this research consists on the development of an accurate dynamic model for the simulation of mooring lines, validate it against wave tank tests and then integrate it in a simulation code for floating wind turbines. This experimentally validated tool is finally used to quantify the impact that dynamic mooring models have on the computation of fatigue and ultimate loads of floating wind turbines in comparison with quasi-static tools. This information will be very useful for future designers to decide which mooring model is adequate depending on the platform type and the expected results. The dynamic mooring lines code developed in this research is based in the Finite Element Method and is oriented to the achievement of a computationally efficient code, selecting a Lumped Mass approach. The experimental tests performed for the validation of the code were carried out at the `Ecole Centrale de Nantes (ECN) wave tank in France, consisting of a chain submerged into a water basin, anchored at the bottom of the basin, where the suspension point of the chain was excited with harmonic motions of different periods. The code showed its ability to predict the tension and the motions at several positions along the length of the line with high accuracy. The results demonstrated the importance of capturing the evolution of the mooring dynamics for the prediction of the line tension, especially for the high frequency motions. Finally, the code was used for an extensive assessment of the effect of mooring dynamics on the computation of fatigue and ultimate loads for different floating wind turbines. The loads were computed for three platforms topologies (semisubmersible, spar-buoy and tension leg platform) and compared with the loads provided using a quasi-static mooring model. More than 20,000 load cases were launched and postprocessed following the IEC 61400-3 guideline and fulfilling the conditions that a certification entity would require to an offshore wind turbine designer. The results showed that the impact of mooring dynamics in both fatigue and ultimate loads increases as elements located closer to the platform are evaluated; the blade and the shaft loads are only slightly modified by the mooring dynamics in all the platform designs, the tower base loads can be significantly affected depending on the platform concept and the mooring lines tension strongly depends on the lines dynamics both in fatigue and extreme loads in all the platform concepts evaluated.