32 resultados para Monte-Carlo approach
em Universidad Politécnica de Madrid
Resumo:
Stochastic model updating must be considered for quantifying uncertainties inherently existing in real-world engineering structures. By this means the statistical properties,instead of deterministic values, of structural parameters can be sought indicating the parameter variability. However, the implementation of stochastic model updating is much more complicated than that of deterministic methods particularly in the aspects of theoretical complexity and low computational efficiency. This study attempts to propose a simple and cost-efficient method by decomposing a stochastic updating process into a series of deterministic ones with the aid of response surface models and Monte Carlo simulation. The response surface models are used as surrogates for original FE models in the interest of programming simplification, fast response computation and easy inverse optimization. Monte Carlo simulation is adopted for generating samples from the assumed or measured probability distributions of responses. Each sample corresponds to an individual deterministic inverse process predicting the deterministic values of parameters. Then the parameter means and variances can be statistically estimated based on all the parameter predictions by running all the samples. Meanwhile, the analysis of variance approach is employed for the evaluation of parameter variability significance. The proposed method has been demonstrated firstly on a numerical beam and then a set of nominally identical steel plates tested in the laboratory. It is found that compared with the existing stochastic model updating methods, the proposed method presents similar accuracy while its primary merits consist in its simple implementation and cost efficiency in response computation and inverse optimization.
Resumo:
In activation calculations, there are several approaches to quantify uncertainties: deterministic by means of sensitivity analysis, and stochastic by means of Monte Carlo. Here, two different Monte Carlo approaches for nuclear data uncertainty are presented: the first one is the Total Monte Carlo (TMC). The second one is by means of a Monte Carlo sampling of the covariance information included in the nuclear data libraries to propagate these uncertainties throughout the activation calculations. This last approach is what we named Covariance Uncertainty Propagation, CUP. This work presents both approaches and their differences. Also, they are compared by means of an activation calculation, where the cross-section uncertainties of 239Pu and 241Pu are propagated in an ADS activation calculation.
Resumo:
Purpose: A fully three-dimensional (3D) massively parallelizable list-mode ordered-subsets expectation-maximization (LM-OSEM) reconstruction algorithm has been developed for high-resolution PET cameras. System response probabilities are calculated online from a set of parameters derived from Monte Carlo simulations. The shape of a system response for a given line of response (LOR) has been shown to be asymmetrical around the LOR. This work has been focused on the development of efficient region-search techniques to sample the system response probabilities, which are suitable for asymmetric kernel models, including elliptical Gaussian models that allow for high accuracy and high parallelization efficiency. The novel region-search scheme using variable kernel models is applied in the proposed PET reconstruction algorithm. Methods: A novel region-search technique has been used to sample the probability density function in correspondence with a small dynamic subset of the field of view that constitutes the region of response (ROR). The ROR is identified around the LOR by searching for any voxel within a dynamically calculated contour. The contour condition is currently defined as a fixed threshold over the posterior probability, and arbitrary kernel models can be applied using a numerical approach. The processing of the LORs is distributed in batches among the available computing devices, then, individual LORs are processed within different processing units. In this way, both multicore and multiple many-core processing units can be efficiently exploited. Tests have been conducted with probability models that take into account the noncolinearity, positron range, and crystal penetration effects, that produced tubes of response with varying elliptical sections whose axes were a function of the crystal's thickness and angle of incidence of the given LOR. The algorithm treats the probability model as a 3D scalar field defined within a reference system aligned with the ideal LOR. Results: This new technique provides superior image quality in terms of signal-to-noise ratio as compared with the histogram-mode method based on precomputed system matrices available for a commercial small animal scanner. Reconstruction times can be kept low with the use of multicore, many-core architectures, including multiple graphic processing units. Conclusions: A highly parallelizable LM reconstruction method has been proposed based on Monte Carlo simulations and new parallelization techniques aimed at improving the reconstruction speed and the image signal-to-noise of a given OSEM algorithm. The method has been validated using simulated and real phantoms. A special advantage of the new method is the possibility of defining dynamically the cut-off threshold over the calculated probabilities thus allowing for a direct control on the trade-off between speed and quality during the reconstruction.
Resumo:
Un escenario habitualmente considerado para el uso sostenible y prolongado de la energía nuclear contempla un parque de reactores rápidos refrigerados por metales líquidos (LMFR) dedicados al reciclado de Pu y la transmutación de actínidos minoritarios (MA). Otra opción es combinar dichos reactores con algunos sistemas subcríticos asistidos por acelerador (ADS), exclusivamente destinados a la eliminación de MA. El diseño y licenciamiento de estos reactores innovadores requiere herramientas computacionales prácticas y precisas, que incorporen el conocimiento obtenido en la investigación experimental de nuevas configuraciones de reactores, materiales y sistemas. A pesar de que se han construido y operado un cierto número de reactores rápidos a nivel mundial, la experiencia operacional es todavía reducida y no todos los transitorios se han podido entender completamente. Por tanto, los análisis de seguridad de nuevos LMFR están basados fundamentalmente en métodos deterministas, al contrario que las aproximaciones modernas para reactores de agua ligera (LWR), que se benefician también de los métodos probabilistas. La aproximación más usada en los estudios de seguridad de LMFR es utilizar una variedad de códigos, desarrollados a base de distintas teorías, en busca de soluciones integrales para los transitorios e incluyendo incertidumbres. En este marco, los nuevos códigos para cálculos de mejor estimación ("best estimate") que no incluyen aproximaciones conservadoras, son de una importancia primordial para analizar estacionarios y transitorios en reactores rápidos. Esta tesis se centra en el desarrollo de un código acoplado para realizar análisis realistas en reactores rápidos críticos aplicando el método de Monte Carlo. Hoy en día, dado el mayor potencial de recursos computacionales, los códigos de transporte neutrónico por Monte Carlo se pueden usar de manera práctica para realizar cálculos detallados de núcleos completos, incluso de elevada heterogeneidad material. Además, los códigos de Monte Carlo se toman normalmente como referencia para los códigos deterministas de difusión en multigrupos en aplicaciones con reactores rápidos, porque usan secciones eficaces punto a punto, un modelo geométrico exacto y tienen en cuenta intrínsecamente la dependencia angular de flujo. En esta tesis se presenta una metodología de acoplamiento entre el conocido código MCNP, que calcula la generación de potencia en el reactor, y el código de termohidráulica de subcanal COBRA-IV, que obtiene las distribuciones de temperatura y densidad en el sistema. COBRA-IV es un código apropiado para aplicaciones en reactores rápidos ya que ha sido validado con resultados experimentales en haces de barras con sodio, incluyendo las correlaciones más apropiadas para metales líquidos. En una primera fase de la tesis, ambos códigos se han acoplado en estado estacionario utilizando un método iterativo con intercambio de archivos externos. El principal problema en el acoplamiento neutrónico y termohidráulico en estacionario con códigos de Monte Carlo es la manipulación de las secciones eficaces para tener en cuenta el ensanchamiento Doppler cuando la temperatura del combustible aumenta. Entre todas las opciones disponibles, en esta tesis se ha escogido la aproximación de pseudo materiales, y se ha comprobado que proporciona resultados aceptables en su aplicación con reactores rápidos. Por otro lado, los cambios geométricos originados por grandes gradientes de temperatura en el núcleo de reactores rápidos resultan importantes para la neutrónica como consecuencia del elevado recorrido libre medio del neutrón en estos sistemas. Por tanto, se ha desarrollado un módulo adicional que simula la geometría del reactor en caliente y permite estimar la reactividad debido a la expansión del núcleo en un transitorio. éste módulo calcula automáticamente la longitud del combustible, el radio de la vaina, la separación de los elementos de combustible y el radio de la placa soporte en función de la temperatura. éste efecto es muy relevante en transitorios sin inserción de bancos de parada. También relacionado con los cambios geométricos, se ha implementado una herramienta que, automatiza el movimiento de las barras de control en busca d la criticidad del reactor, o bien calcula el valor de inserción axial las barras de control. Una segunda fase en la plataforma de cálculo que se ha desarrollado es la simulació dinámica. Puesto que MCNP sólo realiza cálculos estacionarios para sistemas críticos o supercríticos, la solución más directa que se propone sin modificar el código fuente de MCNP es usar la aproximación de factorización de flujo, que resuelve por separado la forma del flujo y la amplitud. En este caso se han estudiado en profundidad dos aproximaciones: adiabática y quasiestática. El método adiabático usa un esquema de acoplamiento que alterna en el tiempo los cálculos neutrónicos y termohidráulicos. MCNP calcula el modo fundamental de la distribución de neutrones y la reactividad al final de cada paso de tiempo, y COBRA-IV calcula las propiedades térmicas en el punto intermedio de los pasos de tiempo. La evolución de la amplitud de flujo se calcula resolviendo las ecuaciones de cinética puntual. Este método calcula la reactividad estática en cada paso de tiempo que, en general, difiere de la reactividad dinámica que se obtendría con la distribución de flujo exacta y dependiente de tiempo. No obstante, para entornos no excesivamente alejados de la criticidad ambas reactividades son similares y el método conduce a resultados prácticos aceptables. Siguiendo esta línea, se ha desarrollado después un método mejorado para intentar tener en cuenta el efecto de la fuente de neutrones retardados en la evolución de la forma del flujo durante el transitorio. El esquema consiste en realizar un cálculo cuasiestacionario por cada paso de tiempo con MCNP. La simulación cuasiestacionaria se basa EN la aproximación de fuente constante de neutrones retardados, y consiste en dar un determinado peso o importancia a cada ciclo computacial del cálculo de criticidad con MCNP para la estimación del flujo final. Ambos métodos se han verificado tomando como referencia los resultados del código de difusión COBAYA3 frente a un ejercicio común y suficientemente significativo. Finalmente, con objeto de demostrar la posibilidad de uso práctico del código, se ha simulado un transitorio en el concepto de reactor crítico en fase de diseño MYRRHA/FASTEF, de 100 MW de potencia térmica y refrigerado por plomo-bismuto. ABSTRACT Long term sustainable nuclear energy scenarios envisage a fleet of Liquid Metal Fast Reactors (LMFR) for the Pu recycling and minor actinides (MAs) transmutation or combined with some accelerator driven systems (ADS) just for MAs elimination. Design and licensing of these innovative reactor concepts require accurate computational tools, implementing the knowledge obtained in experimental research for new reactor configurations, materials and associated systems. Although a number of fast reactor systems have already been built, the operational experience is still reduced, especially for lead reactors, and not all the transients are fully understood. The safety analysis approach for LMFR is therefore based only on deterministic methods, different from modern approach for Light Water Reactors (LWR) which also benefit from probabilistic methods. Usually, the approach adopted in LMFR safety assessments is to employ a variety of codes, somewhat different for the each other, to analyze transients looking for a comprehensive solution and including uncertainties. In this frame, new best estimate simulation codes are of prime importance in order to analyze fast reactors steady state and transients. This thesis is focused on the development of a coupled code system for best estimate analysis in fast critical reactor. Currently due to the increase in the computational resources, Monte Carlo methods for neutrons transport can be used for detailed full core calculations. Furthermore, Monte Carlo codes are usually taken as reference for deterministic diffusion multigroups codes in fast reactors applications because they employ point-wise cross sections in an exact geometry model and intrinsically account for directional dependence of the ux. The coupling methodology presented here uses MCNP to calculate the power deposition within the reactor. The subchannel code COBRA-IV calculates the temperature and density distribution within the reactor. COBRA-IV is suitable for fast reactors applications because it has been validated against experimental results in sodium rod bundles. The proper correlations for liquid metal applications have been added to the thermal-hydraulics program. Both codes are coupled at steady state using an iterative method and external files exchange. The main issue in the Monte Carlo/thermal-hydraulics steady state coupling is the cross section handling to take into account Doppler broadening when temperature rises. Among every available options, the pseudo materials approach has been chosen in this thesis. This approach obtains reasonable results in fast reactor applications. Furthermore, geometrical changes caused by large temperature gradients in the core, are of major importance in fast reactor due to the large neutron mean free path. An additional module has therefore been included in order to simulate the reactor geometry in hot state or to estimate the reactivity due to core expansion in a transient. The module automatically calculates the fuel length, cladding radius, fuel assembly pitch and diagrid radius with the temperature. This effect will be crucial in some unprotected transients. Also related to geometrical changes, an automatic control rod movement feature has been implemented in order to achieve a just critical reactor or to calculate control rod worth. A step forward in the coupling platform is the dynamic simulation. Since MCNP performs only steady state calculations for critical systems, the more straight forward option without modifying MCNP source code, is to use the flux factorization approach solving separately the flux shape and amplitude. In this thesis two options have been studied to tackle time dependent neutronic simulations using a Monte Carlo code: adiabatic and quasistatic methods. The adiabatic methods uses a staggered time coupling scheme for the time advance of neutronics and the thermal-hydraulics calculations. MCNP computes the fundamental mode of the neutron flux distribution and the reactivity at the end of each time step and COBRA-IV the thermal properties at half of the the time steps. To calculate the flux amplitude evolution a solver of the point kinetics equations is used. This method calculates the static reactivity in each time step that in general is different from the dynamic reactivity calculated with the exact flux distribution. Nevertheless, for close to critical situations, both reactivities are similar and the method leads to acceptable practical results. In this line, an improved method as an attempt to take into account the effect of delayed neutron source in the transient flux shape evolutions is developed. The scheme performs a quasistationary calculation per time step with MCNP. This quasistationary simulations is based con the constant delayed source approach, taking into account the importance of each criticality cycle in the final flux estimation. Both adiabatic and quasistatic methods have been verified against the diffusion code COBAYA3, using a theoretical kinetic exercise. Finally, a transient in a critical 100 MWth lead-bismuth-eutectic reactor concept is analyzed using the adiabatic method as an application example in a real system.
Resumo:
Multi-label classification (MLC) is the supervised learning problem where an instance may be associated with multiple labels. Modeling dependencies between labels allows MLC methods to improve their performance at the expense of an increased computational cost. In this paper we focus on the classifier chains (CC) approach for modeling dependencies. On the one hand, the original CC algorithm makes a greedy approximation, and is fast but tends to propagate errors down the chain. On the other hand, a recent Bayes-optimal method improves the performance, but is computationally intractable in practice. Here we present a novel double-Monte Carlo scheme (M2CC), both for finding a good chain sequence and performing efficient inference. The M2CC algorithm remains tractable for high-dimensional data sets and obtains the best overall accuracy, as shown on several real data sets with input dimension as high as 1449 and up to 103 labels.
Resumo:
Multi-dimensional classification (MDC) is the supervised learning problem where an instance is associated with multiple classes, rather than with a single class, as in traditional classification problems. Since these classes are often strongly correlated, modeling the dependencies between them allows MDC methods to improve their performance – at the expense of an increased computational cost. In this paper we focus on the classifier chains (CC) approach for modeling dependencies, one of the most popular and highest-performing methods for multi-label classification (MLC), a particular case of MDC which involves only binary classes (i.e., labels). The original CC algorithm makes a greedy approximation, and is fast but tends to propagate errors along the chain. Here we present novel Monte Carlo schemes, both for finding a good chain sequence and performing efficient inference. Our algorithms remain tractable for high-dimensional data sets and obtain the best predictive performance across several real data sets.
Resumo:
The fixed point implementation of IIR digital filters usually leads to the appearance of zero-input limit cycles, which degrade the performance of the system. In this paper, we develop an efficient Monte Carlo algorithm to detect and characterize limit cycles in fixed-point IIR digital filters. The proposed approach considers filters formulated in the state space and is valid for any fixed point representation and quantization function. Numerical simulations on several high-order filters, where an exhaustive search is unfeasible, show the effectiveness of the proposed approach.
Resumo:
ObjectKineticMonteCarlo models allow for the study of the evolution of the damage created by irradiation to time scales that are comparable to those achieved experimentally. Therefore, the essential ObjectKineticMonteCarlo parameters can be validated through comparison with experiments. However, this validation is not trivial since a large number of parameters is necessary, including migration energies of point defects and their clusters, binding energies of point defects in clusters, as well as the interactionradii. This is particularly cumbersome when describing an alloy, such as the Fe–Cr system, which is of interest for fusion energy applications. In this work we describe an ObjectKineticMonteCarlo model for Fe–Cr alloys in the dilute limit. The parameters used in the model come either from density functional theory calculations or from empirical interatomic potentials. This model is used to reproduce isochronal resistivity recovery experiments of electron irradiateddiluteFe–Cr alloys performed by Abe and Kuramoto. The comparison between the calculated results and the experiments reveal that an important parameter is the capture radius between substitutionalCr and self-interstitialFe atoms. A parametric study is presented on the effect of the capture radius on the simulated recovery curves.
Resumo:
The uncertainty propagation in fuel cycle calculations due to Nuclear Data (ND) is a important important issue for : issue for : • Present fuel cycles (e.g. high burnup fuel programme) • New fuel cycles designs (e.g. fast breeder reactors and ADS) Different error propagation techniques can be used: • Sensitivity analysis • Response Response Surface Method Surface Method • Monte Carlo technique Then, p p , , in this paper, it is assessed the imp y pact of ND uncertainties on the decay heat and radiotoxicity in two applications: • Fission Pulse Decay ( y Heat calculation (FPDH) • Conceptual design of European Facility for Industrial Transmutation (EFIT)
Resumo:
En este estudio se aplica una metodología de obtención de las leyes de frecuencia derivadas (de caudales máximo vertidos y niveles máximos alcanzados) en un entorno de simulaciones de Monte Carlo, para su inclusión en un modelo de análisis de riesgo de presas. Se compara su comportamiento respecto del uso de leyes de frecuencia obtenidas con las técnicas tradicionalmente utilizadas.
Resumo:
Monte Carlo simulations have been carried out to study the effect of temperature on the growth kinetics of a circular grain. This work demonstrates the importance of roughening fluctuations on the growth dynamics. Since the effect of thermal fluctuations is stronger in d =2 than in d =3, as predicted by d =3 theories of domain kinetics, the circular domain shrinks linearly with time as A (t)=A(0)-αt, where A (0) and A(t) are the initial and instantaneous areas, respectively. However, in contrast to d =3, the slope α is strongly temperature dependent for T≥0.6TC. An analytical theory which considers the thermal fluctuations agrees with the T dependence of the Monte Carlo data in this regime, and this model show that these fluctuations are responsible for the strong temperature dependence of the growth rate for d =2. Our results are particularly relevant to the problem of domain growth in surface science
Resumo:
The simulation of interest rate derivatives is a powerful tool to face the current market fluctuations. However, the complexity of the financial models and the way they are processed require exorbitant computation times, what is in clear conflict with the need of a processing time as short as possible to operate in the financial market. To shorten the computation time of financial derivatives the use of hardware accelerators becomes a must.
Resumo:
A Monte Carlo computer simulation technique, in which a continuum system is modeled employing a discrete lattice, has been applied to the problem of recrystallization. Primary recrystallization is modeled under conditions where the degree of stored energy is varied and nucleation occurs homogeneously (without regard for position in the microstructure). The nucleation rate is chosen as site saturated. Temporal evolution of the simulated microstructures is analyzed to provide the time dependence of the recrystallized volume fraction and grain sizes. The recrystallized volume fraction shows sigmoidal variations with time. The data are approximately fit by the Johnson-Mehl-Avrami equation with the expected exponents, however significant deviations are observed for both small and large recrystallized volume fractions. Under constant rate nucleation conditions, the propensity for irregular grain shapes is decreased and the density of two sided grains increases.
Resumo:
The energy and specific energy absorbed in the main cell compartments (nucleus and cytoplasm) in typical radiobiology experiments are usually estimated by calculations as they are not accessible for a direct measurement. In most of the work, the cell geometry is modelled using the combination of simple mathematical volumes. We propose a method based on high resolution confocal imaging and ion beam analysis (IBA) in order to import realistic cell nuclei geometries in Monte-Carlo simulations and thus take into account the variety of different geometries encountered in a typical cell population. Seventy-six cell nuclei have been imaged using confocal microscopy and their chemical composition has been measured using IBA. A cellular phantom was created from these data using the ImageJ image analysis software and imported in the Geant4 Monte-Carlo simulation toolkit. Total energy and specific energy distributions in the 76 cell nuclei have been calculated for two types of irradiation protocols: a 3 MeV alpha particle microbeam used for targeted irradiation and a 239Pu alpha source used for large angle random irradiation. Qualitative images of the energy deposited along the particle tracks have been produced and show good agreement with images of DNA double strand break signalling proteins obtained experimentally. The methodology presented in this paper provides microdosimetric quantities calculated from realistic cellular volumes. It is based on open-source oriented software that is publicly available.
Resumo:
The aim of this work is to optimize a Monte Carlo (MC) kernel for electron radiation therapy (IOERT) compatible with intraoperative usage and to integrate it within an existing IOERT dedicated treatment planning system (TPS)