11 resultados para Molecular-dynamics Simulation
em Universidad Politécnica de Madrid
Resumo:
The mechanisms of growth of a circular void by plastic deformation were studied by means of molecular dynamics in two dimensions (2D). While previous molecular dynamics (MD) simulations in three dimensions (3D) have been limited to small voids (up to ≈10 nm in radius), this strategy allows us to study the behavior of voids of up to 100 nm in radius. MD simulations showed that plastic deformation was triggered by the nucleation of dislocations at the atomic steps of the void surface in the whole range of void sizes studied. The yield stress, defined as stress necessary to nucleate stable dislocations, decreased with temperature, but the void growth rate was not very sensitive to this parameter. Simulations under uniaxial tension, uniaxial deformation and biaxial deformation showed that the void growth rate increased very rapidly with multiaxiality but it did not depend on the initial void radius. These results were compared with previous 3D MD and 2D dislocation dynamics simulations to establish a map of mechanisms and size effects for plastic void growth in crystalline solids.
Resumo:
Irradiation with swift heavy ions (SHI), roughly defined as those having atomic masses larger than 15 and energies exceeding 1 MeV/amu, may lead to significant modification of the irradiated material in a nanometric region around the (straight) ion trajectory (latent tracks). In the case of amorphous silica, SHI irradiation originates nano-tracks of higher density than the virgin material (densification). As a result, the refractive index is increased with respect to that of the surroundings. Moreover, track overlapping leads to continuous amorphous layers that present a significant contrast with respect to the pristine substrate. We have recently demonstrated that SHI irradiation produces a large number of point defects, easily detectable by a number of experimental techniques (work presented in the parallel conference ICDIM). The mechanisms of energy transfer from SHI to the target material have their origin in the high electronic excitation induced in the solid. A number of phenomenological approaches have been employed to describe these mechanisms: coulomb explosion, thermal spike, non-radiative exciton decay, bond weakening. However, a detailed microscopic description is missing due to the difficulty of modeling the time evolution of the electronic excitation. In this work we have employed molecular dynamics (MD) calculations to determine whether the irradiation effects are related to the thermal phenomena described by MD (in the ps domain) or to electronic phenomena (sub-ps domain), e.g., exciton localization. We have carried out simulations of up to 100 ps with large boxes (30x30x8 nm3) using a home-modified version of MDCASK that allows us to define a central hot cylinder (ion track) from which heat flows to the surrounding cold bath (unirradiated sample). We observed that once the cylinder has cooled down, the Si and O coordination numbers are 4 and 2, respectively, as in virgin silica. On the other hand, the density of the (cold) cylinder increases with respect to that of silica and, furthermore, the silica network ring size decreases. Both effects are in agreement with the observed densification. In conclusion, purely thermal effects do not explain the generation of point defects upon irradiation, but they do account for the silica densification.
Resumo:
Pb17Li is today a reference breeder material in diverse fusion R&D programs worldwide. Extracting dynamic and structural properties of liquid LiPb mixtures via molecular dynamics simulations, represent a crucial step for multiscale modeling efforts in order to understand the suitability of this compound for future Nuclear Fusion technologies. At present a Li-Pb cross potential is not available in the literature. Here we present our first results on the validation of two semi-empirical potentials for Li and Pb in liquid phase. Our results represent the establishment of a solid base as a previous but crucial step to implement a LiPb cross potential. Structural and thermodynamical analyses confirm that the implemented potentials for Li and Pb are realistic to simulate both elements in the liquid phase.
Resumo:
Pb17Li is today a reference breeder material in diverse fusion R&D programs worldwide. One of the main issues in these programs is the problem of liquid metals breeder blanket behavior. Structural material of the blanket should meet high requirements because of extreme operating conditions. Therefore the knowledge of eutectic properties like optimal composition, physical and thermodynamic behavior or diffusion coefficients of Tritium are extremely necessary for current designs. In particular, the knowledge of the function linking the tritium concentration dissolved in liquid materials with the tritium partial pressure at a liquid/gas interface in equilibrium, CT=f(PT), is of basic importance because it directly impacts all functional properties of a blanket determining: tritium inventory, tritium permeation rate and tritium extraction efficiency. Nowadays, understanding the structure and behavior of this compound is a real goal in fusion engineering and materials science. Simulations of liquids can provide much information to the community; not only supplementing experimental data, but providing new tests of theories and ideas, making specific predictions that require experimental tests, and ultimately helping to lead to the deeper understanding and better predictive behavior.
Resumo:
Pb17Li is today a reference breeder material in diverse fusion R&D programs worldwide. Extracting dynamic and structural properties of liquid LiPb mixtures via molecular dynamics simulations, represent a crucial step for multiscale modeling efforts in order to understand the suitability of this compound for future Nuclear Fusion technologies. At present a Li-Pb cross potential is not available in the literature. Here we present our first results on the validation of two semi-empirical potentials for Li and Pb in liquid phase. Our results represent the establishment of a solid base as a previous but crucial step to implement a LiPb cross potential. Structural and thermodynamical analyses confirm that the implemented potentials for Li and Pb are realistic to simulate both elements in the liquid phase.
Resumo:
We present and discuss an algorithm to identify and characterize the long icosahedral structures (staggered pentagonal nanowires with 1-5-1-5 atomic structure) that appear in Molecular Dynamics simulations of metallic nanowires of different species subjected to stretching. The use of this algorithm allows the identification of pentagonal rings forming the icosahedral structure as well as the determination of its number np , and the maximum length of the pentagonal nanowire Lpm. The algorithm is tested with some ideal structures to show its ability to discriminate between pentagonal rings and other ring structures. We applied the algorithm to Ni nanowires with temperatures ranging between 4K and 865K, stretched along the [111], [100] and [110] directions. We studied statistically the formation of pentagonal nanowires obtaining the distributions of length Lpm and number of rings np as function of the temperature. The Lpm distribution presents a peaked shape, with peaks located at fixed distances whose separation corresponds to the distance between two consecutive pentagonal rings.
Resumo:
Dislocation mobility —the relation between applied stress and dislocation velocity—is an important property to model the mechanical behavior of structural materials. These mobilities reflect the interaction between the dislocation core and the host lattice and, thus, atomistic resolution is required to capture its details. Because the mobility function is multiparametric, its computation is often highly demanding in terms of computational requirements. Optimizing how tractions are applied can be greatly advantageous in accelerating convergence and reducing the overall computational cost of the simulations. In this paper we perform molecular dynamics simulations of ½ 〈1 1 1〉 screw dislocation motion in tungsten using step and linear time functions for applying external stress. We find that linear functions over time scales of the order of 10–20 ps reduce fluctuations and speed up convergence to the steady-state velocity value by up to a factor of two.
Resumo:
Hydrogen isotopes play a critical role both in inertial and magnetic confinemen Nuclear Fusion. Since the preferent fuel needed for this technology is a mixture of deuterium and tritium. The study of these isotopes particularly at very low temperatures carries a technological interest in other applications. The present line promotes a deep study on the structural configuration that hydrogen and deuterium adopt at cryogenic temperatures and at high pressures. Typical conditions occurring in present Inertial Fusion target designs. Our approach is aims to determine the crystal structure characteristics, phase transitions and other parameters strongly correlated to variations of temperature and pressure.
Resumo:
An elliptic computational fluid dynamics wake model based on the actuator disk concept is used to simulate a wind turbine, approximated by a disk upon which a distribution of forces, defined as axial momentum sources, is applied on an incoming non-uniform shear flow. The rotor is supposed to be uniformly loaded with the exerted forces estimated as a function of the incident wind speed, thrust coefficient and rotor diameter. The model is assessed in terms of wind speed deficit and added turbulence intensity for different turbulence models and is validated from experimental measurements of the Sexbierum wind turbine experiment.
Resumo:
The first steps towards developing a continuum-molecular coupled simulations techniques are presented, for the purpose of computing macroscopic systems of confined fluids. The idea is to compute the interface wall-fluid by Molecular Dynamics simulations, where Lennard-Jones potential (and others) have been employed for the molecular interactions, so the usual non slip boundary condition is not specified. Instead, a shear rate can be imposed at the wall, which allows to obtain the properties of the wall material by means of an iterative method. The remaining fluid region will be computed by a spectral hp method. We present MD simulations of a Couette flow, and the results of the developed boundary conditions from the wall fluid interaction.
Resumo:
In the intricate maturation process of [NiFe]-hydrogenases, the Fe(CN)2CO cofactor is first assembled in a HypCD complex with iron coordinated by cysteines from both proteins and CO is added after ligation of cyanides. The small accessory protein HypC is known to play a role in delivering the cofactor needed for assembling the hydrogenase active site. However, the chemical nature of the Fe(CN)2CO moiety and the stability of the cofactor–HypC complex are open questions. In this work, we address geometries, properties, and the nature of bonding of all chemical species involved in formation and binding of the cofactor by means of quantum calculations. We also study the influence of environmental effects and binding to cysteines on vibrational frequencies of stretching modes of CO and CN used to detect the presence of Fe(CN)2CO. Carbon monoxide is found to be much more sensitive to sulfur binding and the polarity of the medium than cyanides. The stability of the HypC–cofactor complex is analyzed by means of molecular dynamics simulation of cofactor-free and cofactor-bound forms of HypC. The results show that HypC is stable enough to carry the cofactor, but since its binding cysteine is located at the N-terminal unstructured tail, it presents large motions in solution, which suggests the need for a guiding interaction to achieve delivery of the cofactor.