6 resultados para Models, Biological
em Universidad Politécnica de Madrid
Resumo:
Within the regression framework, we show how different levels of nonlinearity influence the instantaneous firing rate prediction of single neurons. Nonlinearity can be achieved in several ways. In particular, we can enrich the predictor set with basis expansions of the input variables (enlarging the number of inputs) or train a simple but different model for each area of the data domain. Spline-based models are popular within the first category. Kernel smoothing methods fall into the second category. Whereas the first choice is useful for globally characterizing complex functions, the second is very handy for temporal data and is able to include inner-state subject variations. Also, interactions among stimuli are considered. We compare state-of-the-art firing rate prediction methods with some more sophisticated spline-based nonlinear methods: multivariate adaptive regression splines and sparse additive models. We also study the impact of kernel smoothing. Finally, we explore the combination of various local models in an incremental learning procedure. Our goal is to demonstrate that appropriate nonlinearity treatment can greatly improve the results. We test our hypothesis on both synthetic data and real neuronal recordings in cat primary visual cortex, giving a plausible explanation of the results from a biological perspective.
Resumo:
Digital atlases of animal development provide a quantitative description of morphogenesis, opening the path toward processes modeling. Prototypic atlases offer a data integration framework where to gather information from cohorts of individuals with phenotypic variability. Relevant information for further theoretical reconstruction includes measurements in time and space for cell behaviors and gene expression. The latter as well as data integration in a prototypic model, rely on image processing strategies. Developing the tools to integrate and analyze biological multidimensional data are highly relevant for assessing chemical toxicity or performing drugs preclinical testing. This article surveys some of the most prominent efforts to assemble these prototypes, categorizes them according to salient criteria and discusses the key questions in the field and the future challenges toward the reconstruction of multiscale dynamics in model organisms.
Resumo:
In order to improve the body of knowledge about brain injury impairment is essential to develop image database with different types of injuries. This paper proposes a new methodology to model three types of brain injury: stroke, tumor and traumatic brain injury; and implements a system to navigate among simulated MRI studies. These studies can be used on research studies, to validate new processing methods and as an educational tool, to show different types of brain injury and how they affect to neuroanatomic structures.
Resumo:
n this paper we propose the use of Networks of Bio-inspired Processors (NBP) to model some biological phenomena within a computational framework. In particular, we propose the use of an extension of NBP named Network Evolutionary Processors Transducers to simulate chemical transformations of substances. Within a biological process, chemical transformations of substances are basic operations in the change of the state of the cell. Previously, it has been proved that NBP are computationally complete, that is, they are able to solve NP complete problems in linear time, using massively parallel computations. In addition, we propose a multilayer architecture that will allow us to design models of biological processes related to cellular communication as well as their implications in the metabolic pathways. Subsequently, these models can be applied not only to biological-cellular instances but, possibly, also to configure instances of interactive processes in many other fields like population interactions, ecological trophic networks, in dustrial ecosystems, etc.
Resumo:
Nondestructive techniques are widely used to assess existing timber structures. The models proposed for these methods are usually performed in the laboratory using small clear wood specimens. But in real situations many anomalies, defects and biological damage are found in wood. In these cases the existing models only indicate that the values are outside normality without providing any other information. To solve this problem, a study of non-destructive probing methods for wood was performed, testing the behaviour of four different techniques (penetration resistance, pullout resistance, drill resistance and chip drill extraction) on wood samples with different biological damage, simulating an in-situ test. The wood samples were obtained from existing Spanish timber structures with biotic damage caused by borer insects, termites, brown rot and white rot. The study concludes that all of the methods offer more or less detailed information about the degree of deterioration of wood, but that the first two methods (penetration and pullout resistance) cannot distinguish between pathologies. On the other hand, drill resistance and chip drill extraction make it possible to differentiate pathologies and even to identify species or damage location. Finally, the techniques used were compared to characterize their advantages and disadvantages.
Resumo:
This study focuses on the relationship between CO2 production and the ultimate hatchability of the incubation. A total amount of 43316 eggs of red-legged partridge (Alectoris rufa) were supervised during five actual incubations: three in 2012 and two in 2013. The CO2 concentration inside the incubator was monitored over a 20-day period, showing sigmoidal growth from ambient level (428 ppm) up to 1700 ppm in the incubation with the highest hatchability. Two sigmoid growth models (logistic and Gompertz) were used to describe the CO2 production by the eggs, with the result that the logistic model was a slightly better fit (r2=0.976 compared to r2=0.9746 for Gompertz). A coefficient of determination of 0.997 between the final CO2 estimation (ppm) using the logistic model and hatchability (%) was found.