3 resultados para Modelos espacialmente explícitos
em Universidad Politécnica de Madrid
Resumo:
La frecuencia con la que se producen explosiones sobre edificios, ya sean accidentales o intencionadas, es reducida, pero sus efectos pueden ser catastróficos. Es deseable poder predecir de forma suficientemente precisa las consecuencias de estas acciones dinámicas sobre edificaciones civiles, entre las cuales las estructuras reticuladas de hormigón armado son una tipología habitual. En esta tesis doctoral se exploran distintas opciones prácticas para el modelado y cálculo numérico por ordenador de estructuras de hormigón armado sometidas a explosiones. Se emplean modelos numéricos de elementos finitos con integración explícita en el tiempo, que demuestran su capacidad efectiva para simular los fenómenos físicos y estructurales de dinámica rápida y altamente no lineales que suceden, pudiendo predecir los daños ocasionados tanto por la propia explosión como por el posible colapso progresivo de la estructura. El trabajo se ha llevado a cabo empleando el código comercial de elementos finitos LS-DYNA (Hallquist, 2006), desarrollando en el mismo distintos tipos de modelos de cálculo que se pueden clasificar en dos tipos principales: 1) modelos basados en elementos finitos de continuo, en los que se discretiza directamente el medio continuo mediante grados de libertad nodales de desplazamientos; 2) modelos basados en elementos finitos estructurales, mediante vigas y láminas, que incluyen hipótesis cinemáticas para elementos lineales o superficiales. Estos modelos se desarrollan y discuten a varios niveles distintos: 1) a nivel del comportamiento de los materiales, 2) a nivel de la respuesta de elementos estructurales tales como columnas, vigas o losas, y 3) a nivel de la respuesta de edificios completos o de partes significativas de los mismos. Se desarrollan modelos de elementos finitos de continuo 3D muy detallados que modelizan el hormigón en masa y el acero de armado de forma segregada. El hormigón se representa con un modelo constitutivo del hormigón CSCM (Murray et al., 2007), que tiene un comportamiento inelástico, con diferente respuesta a tracción y compresión, endurecimiento, daño por fisuración y compresión, y rotura. El acero se representa con un modelo constitutivo elastoplástico bilineal con rotura. Se modeliza la geometría precisa del hormigón mediante elementos finitos de continuo 3D y cada una de las barras de armado mediante elementos finitos tipo viga, con su posición exacta dentro de la masa de hormigón. La malla del modelo se construye mediante la superposición de los elementos de continuo de hormigón y los elementos tipo viga de las armaduras segregadas, que son obligadas a seguir la deformación del sólido en cada punto mediante un algoritmo de penalización, simulando así el comportamiento del hormigón armado. En este trabajo se denominarán a estos modelos simplificadamente como modelos de EF de continuo. Con estos modelos de EF de continuo se analiza la respuesta estructural de elementos constructivos (columnas, losas y pórticos) frente a acciones explosivas. Asimismo se han comparado con resultados experimentales, de ensayos sobre vigas y losas con distintas cargas de explosivo, verificándose una coincidencia aceptable y permitiendo una calibración de los parámetros de cálculo. Sin embargo estos modelos tan detallados no son recomendables para analizar edificios completos, ya que el elevado número de elementos finitos que serían necesarios eleva su coste computacional hasta hacerlos inviables para los recursos de cálculo actuales. Adicionalmente, se desarrollan modelos de elementos finitos estructurales (vigas y láminas) que, con un coste computacional reducido, son capaces de reproducir el comportamiento global de la estructura con una precisión similar. Se modelizan igualmente el hormigón en masa y el acero de armado de forma segregada. El hormigón se representa con el modelo constitutivo del hormigón EC2 (Hallquist et al., 2013), que también presenta un comportamiento inelástico, con diferente respuesta a tracción y compresión, endurecimiento, daño por fisuración y compresión, y rotura, y se usa en elementos finitos tipo lámina. El acero se representa de nuevo con un modelo constitutivo elastoplástico bilineal con rotura, usando elementos finitos tipo viga. Se modeliza una geometría equivalente del hormigón y del armado, y se tiene en cuenta la posición relativa del acero dentro de la masa de hormigón. Las mallas de ambos se unen mediante nodos comunes, produciendo una respuesta conjunta. En este trabajo se denominarán a estos modelos simplificadamente como modelos de EF estructurales. Con estos modelos de EF estructurales se simulan los mismos elementos constructivos que con los modelos de EF de continuo, y comparando sus respuestas estructurales frente a explosión se realiza la calibración de los primeros, de forma que se obtiene un comportamiento estructural similar con un coste computacional reducido. Se comprueba que estos mismos modelos, tanto los modelos de EF de continuo como los modelos de EF estructurales, son precisos también para el análisis del fenómeno de colapso progresivo en una estructura, y que se pueden utilizar para el estudio simultáneo de los daños de una explosión y el posterior colapso. Para ello se incluyen formulaciones que permiten considerar las fuerzas debidas al peso propio, sobrecargas y los contactos de unas partes de la estructura sobre otras. Se validan ambos modelos con un ensayo a escala real en el que un módulo con seis columnas y dos plantas colapsa al eliminar una de sus columnas. El coste computacional del modelo de EF de continuo para la simulación de este ensayo es mucho mayor que el del modelo de EF estructurales, lo cual hace inviable su aplicación en edificios completos, mientras que el modelo de EF estructurales presenta una respuesta global suficientemente precisa con un coste asumible. Por último se utilizan los modelos de EF estructurales para analizar explosiones sobre edificios de varias plantas, y se simulan dos escenarios con cargas explosivas para un edificio completo, con un coste computacional moderado. The frequency of explosions on buildings whether they are intended or accidental is small, but they can have catastrophic effects. Being able to predict in a accurate enough manner the consequences of these dynamic actions on civil buildings, among which frame-type reinforced concrete buildings are a frequent typology is desirable. In this doctoral thesis different practical options for the modeling and computer assisted numerical calculation of reinforced concrete structures submitted to explosions are explored. Numerical finite elements models with explicit time-based integration are employed, demonstrating their effective capacity in the simulation of the occurring fast dynamic and highly nonlinear physical and structural phenomena, allowing to predict the damage caused by the explosion itself as well as by the possible progressive collapse of the structure. The work has been carried out with the commercial finite elements code LS-DYNA (Hallquist, 2006), developing several types of calculation model classified in two main types: 1) Models based in continuum finite elements in which the continuous medium is discretized directly by means of nodal displacement degrees of freedom; 2) Models based on structural finite elements, with beams and shells, including kinematic hypothesis for linear and superficial elements. These models are developed and discussed at different levels: 1) material behaviour, 2) response of structural elements such as columns, beams and slabs, and 3) response of complete buildings or significative parts of them. Very detailed 3D continuum finite element models are developed, modeling mass concrete and reinforcement steel in a segregated manner. Concrete is represented with a constitutive concrete model CSCM (Murray et al., 2007), that has an inelastic behaviour, with different tension and compression response, hardening, cracking and compression damage and failure. The steel is represented with an elastic-plastic bilinear model with failure. The actual geometry of the concrete is modeled with 3D continuum finite elements and every and each of the reinforcing bars with beam-type finite elements, with their exact position in the concrete mass. The mesh of the model is generated by the superposition of the concrete continuum elements and the beam-type elements of the segregated reinforcement, which are made to follow the deformation of the solid in each point by means of a penalty algorithm, reproducing the behaviour of reinforced concrete. In this work these models will be called continuum FE models as a simplification. With these continuum FE models the response of construction elements (columns, slabs and frames) under explosive actions are analysed. They have also been compared with experimental results of tests on beams and slabs with various explosive charges, verifying an acceptable coincidence and allowing a calibration of the calculation parameters. These detailed models are however not advised for the analysis of complete buildings, as the high number of finite elements necessary raises its computational cost, making them unreliable for the current calculation resources. In addition to that, structural finite elements (beams and shells) models are developed, which, while having a reduced computational cost, are able to reproduce the global behaviour of the structure with a similar accuracy. Mass concrete and reinforcing steel are also modeled segregated. Concrete is represented with the concrete constitutive model EC2 (Hallquist et al., 2013), which also presents an inelastic behaviour, with a different tension and compression response, hardening, compression and cracking damage and failure, and is used in shell-type finite elements. Steel is represented once again with an elastic-plastic bilineal with failure constitutive model, using beam-type finite elements. An equivalent geometry of the concrete and the steel is modeled, considering the relative position of the steel inside the concrete mass. The meshes of both sets of elements are bound with common nodes, therefore producing a joint response. These models will be called structural FE models as a simplification. With these structural FE models the same construction elements as with the continuum FE models are simulated, and by comparing their response under explosive actions a calibration of the former is carried out, resulting in a similar response with a reduced computational cost. It is verified that both the continuum FE models and the structural FE models are also accurate for the analysis of the phenomenon of progressive collapse of a structure, and that they can be employed for the simultaneous study of an explosion damage and the resulting collapse. Both models are validated with an experimental full-scale test in which a six column, two floors module collapses after the removal of one of its columns. The computational cost of the continuum FE model for the simulation of this test is a lot higher than that of the structural FE model, making it non-viable for its application to full buildings, while the structural FE model presents a global response accurate enough with an admissible cost. Finally, structural FE models are used to analyze explosions on several story buildings, and two scenarios are simulated with explosive charges for a full building, with a moderate computational cost.
Resumo:
La idea principal de este artículo es realizar una reflexión sobre el concepto de variedad urbana entendida como una cualidad intrínseca de la ciudad, relacionada directamente con la calidad de vida e imprescindible para plantear modelos alternativos de intervención en la ciudad y el territorio así como procesos de regeneración y rehabilitación integral. Se trata de una condición necesaria aunque no suficiente de la calidad de vida urbana. El proceso de desarrollo económico ha venido ejerciendo una influencia perversa en la ciudad y en el planeamiento de las nuevas áreas urbanas, al provocar la división de la ciudad en piezas homogéneas, separadas social, funcional y espacialmente; y, promover, al mismo tiempo, la expansión urbana y la degradación de las áreas centrales de la ciudad, incluidas las grandes periferias surgidas en el último tercio del siglo XX. La ausencia de variedad se puede considerar un síntoma de la vulnerabilidad urbana. Por esta razón, es necesario transcender del concepto limitado y reducido de variedad urbana, al que habitualmente se recurre, más relacionado con la idea de mezcla de actividades y usos, o bien, con el sumatorio de diversidades parciales (similar al utilizado en Ecología) hacia un enfoque más complejo y global.
Resumo:
El objetivo de esta Tesis ha sido la consecución de simulaciones en tiempo real de vehículos industriales modelizados como sistemas multicuerpo complejos formados por sólidos rígidos. Para el desarrollo de un programa de simulación deben considerarse cuatro aspectos fundamentales: la modelización del sistema multicuerpo (tipos de coordenadas, pares ideales o impuestos mediante fuerzas), la formulación a utilizar para plantear las ecuaciones diferenciales del movimiento (coordenadas dependientes o independientes, métodos globales o topológicos, forma de imponer las ecuaciones de restricción), el método de integración numérica para resolver estas ecuaciones en el tiempo (integradores explícitos o implícitos) y finalmente los detalles de la implementación realizada (lenguaje de programación, librerías matemáticas, técnicas de paralelización). Estas cuatro etapas están interrelacionadas entre sí y todas han formado parte de este trabajo. Desde la generación de modelos de una furgoneta y de camión con semirremolque, el uso de tres formulaciones dinámicas diferentes, la integración de las ecuaciones diferenciales del movimiento mediante métodos explícitos e implícitos, hasta el uso de funciones BLAS, de técnicas de matrices sparse y la introducción de paralelización para utilizar los distintos núcleos del procesador. El trabajo presentado en esta Tesis ha sido organizado en 8 capítulos, dedicándose el primero de ellos a la Introducción. En el Capítulo 2 se presentan dos formulaciones semirrecursivas diferentes, de las cuales la primera está basada en una doble transformación de velocidades, obteniéndose las ecuaciones diferenciales del movimiento en función de las aceleraciones relativas independientes. La integración numérica de estas ecuaciones se ha realizado con el método de Runge-Kutta explícito de cuarto orden. La segunda formulación está basada en coordenadas relativas dependientes, imponiendo las restricciones por medio de penalizadores en posición y corrigiendo las velocidades y aceleraciones mediante métodos de proyección. En este segundo caso la integración de las ecuaciones del movimiento se ha llevado a cabo mediante el integrador implícito HHT (Hilber, Hughes and Taylor), perteneciente a la familia de integradores estructurales de Newmark. En el Capítulo 3 se introduce la tercera formulación utilizada en esta Tesis. En este caso las uniones entre los sólidos del sistema se ha realizado mediante uniones flexibles, lo que obliga a imponer los pares por medio de fuerzas. Este tipo de uniones impide trabajar con coordenadas relativas, por lo que la posición del sistema y el planteamiento de las ecuaciones del movimiento se ha realizado utilizando coordenadas Cartesianas y parámetros de Euler. En esta formulación global se introducen las restricciones mediante fuerzas (con un planteamiento similar al de los penalizadores) y la estabilización del proceso de integración numérica se realiza también mediante proyecciones de velocidades y aceleraciones. En el Capítulo 4 se presenta una revisión de las principales herramientas y estrategias utilizadas para aumentar la eficiencia de las implementaciones de los distintos algoritmos. En primer lugar se incluye una serie de consideraciones básicas para aumentar la eficiencia numérica de las implementaciones. A continuación se mencionan las principales características de los analizadores de códigos utilizados y también las librerías matemáticas utilizadas para resolver los problemas de álgebra lineal tanto con matrices densas como sparse. Por último se desarrolla con un cierto detalle el tema de la paralelización en los actuales procesadores de varios núcleos, describiendo para ello el patrón empleado y las características más importantes de las dos herramientas propuestas, OpenMP y las TBB de Intel. Hay que señalar que las características de los sistemas multicuerpo problemas de pequeño tamaño, frecuente uso de la recursividad, y repetición intensiva en el tiempo de los cálculos con fuerte dependencia de los resultados anteriores dificultan extraordinariamente el uso de técnicas de paralelización frente a otras áreas de la mecánica computacional, tales como por ejemplo el cálculo por elementos finitos. Basándose en los conceptos mencionados en el Capítulo 4, el Capítulo 5 está dividido en tres secciones, una para cada formulación propuesta en esta Tesis. En cada una de estas secciones se describen los detalles de cómo se han realizado las distintas implementaciones propuestas para cada algoritmo y qué herramientas se han utilizado para ello. En la primera sección se muestra el uso de librerías numéricas para matrices densas y sparse en la formulación topológica semirrecursiva basada en la doble transformación de velocidades. En la segunda se describe la utilización de paralelización mediante OpenMP y TBB en la formulación semirrecursiva con penalizadores y proyecciones. Por último, se describe el uso de técnicas de matrices sparse y paralelización en la formulación global con uniones flexibles y parámetros de Euler. El Capítulo 6 describe los resultados alcanzados mediante las formulaciones e implementaciones descritas previamente. Este capítulo comienza con una descripción de la modelización y topología de los dos vehículos estudiados. El primer modelo es un vehículo de dos ejes del tipo chasis-cabina o furgoneta, perteneciente a la gama de vehículos de carga medianos. El segundo es un vehículo de cinco ejes que responde al modelo de un camión o cabina con semirremolque, perteneciente a la categoría de vehículos industriales pesados. En este capítulo además se realiza un estudio comparativo entre las simulaciones de estos vehículos con cada una de las formulaciones utilizadas y se presentan de modo cuantitativo los efectos de las mejoras alcanzadas con las distintas estrategias propuestas en esta Tesis. Con objeto de extraer conclusiones más fácilmente y para evaluar de un modo más objetivo las mejoras introducidas en la Tesis, todos los resultados de este capítulo se han obtenido con el mismo computador, que era el top de la gama Intel Xeon en 2007, pero que hoy día está ya algo obsoleto. Por último los Capítulos 7 y 8 están dedicados a las conclusiones finales y las futuras líneas de investigación que pueden derivar del trabajo realizado en esta Tesis. Los objetivos de realizar simulaciones en tiempo real de vehículos industriales de gran complejidad han sido alcanzados con varias de las formulaciones e implementaciones desarrolladas. ABSTRACT The objective of this Dissertation has been the achievement of real time simulations of industrial vehicles modeled as complex multibody systems made up by rigid bodies. For the development of a simulation program, four main aspects must be considered: the modeling of the multibody system (types of coordinates, ideal joints or imposed by means of forces), the formulation to be used to set the differential equations of motion (dependent or independent coordinates, global or topological methods, ways to impose constraints equations), the method of numerical integration to solve these equations in time (explicit or implicit integrators) and the details of the implementation carried out (programming language, mathematical libraries, parallelization techniques). These four stages are interrelated and all of them are part of this work. They involve the generation of models for a van and a semitrailer truck, the use of three different dynamic formulations, the integration of differential equations of motion through explicit and implicit methods, the use of BLAS functions and sparse matrix techniques, and the introduction of parallelization to use the different processor cores. The work presented in this Dissertation has been structured in eight chapters, the first of them being the Introduction. In Chapter 2, two different semi-recursive formulations are shown, of which the first one is based on a double velocity transformation, thus getting the differential equations of motion as a function of the independent relative accelerations. The numerical integration of these equations has been made with the Runge-Kutta explicit method of fourth order. The second formulation is based on dependent relative coordinates, imposing the constraints by means of position penalty coefficients and correcting the velocities and accelerations by projection methods. In this second case, the integration of the motion equations has been carried out by means of the HHT implicit integrator (Hilber, Hughes and Taylor), which belongs to the Newmark structural integrators family. In Chapter 3, the third formulation used in this Dissertation is presented. In this case, the joints between the bodies of the system have been considered as flexible joints, with forces used to impose the joint conditions. This kind of union hinders to work with relative coordinates, so the position of the system bodies and the setting of the equations of motion have been carried out using Cartesian coordinates and Euler parameters. In this global formulation, constraints are introduced through forces (with a similar approach to the penalty coefficients) are presented. The stabilization of the numerical integration is carried out also by velocity and accelerations projections. In Chapter 4, a revision of the main computer tools and strategies used to increase the efficiency of the implementations of the algorithms is presented. First of all, some basic considerations to increase the numerical efficiency of the implementations are included. Then the main characteristics of the code’ analyzers used and also the mathematical libraries used to solve linear algebra problems (both with dense and sparse matrices) are mentioned. Finally, the topic of parallelization in current multicore processors is developed thoroughly. For that, the pattern used and the most important characteristics of the tools proposed, OpenMP and Intel TBB, are described. It needs to be highlighted that the characteristics of multibody systems small size problems, frequent recursion use and intensive repetition along the time of the calculation with high dependencies of the previous results complicate extraordinarily the use of parallelization techniques against other computational mechanics areas, as the finite elements computation. Based on the concepts mentioned in Chapter 4, Chapter 5 is divided into three sections, one for each formulation proposed in this Dissertation. In each one of these sections, the details of how these different proposed implementations have been made for each algorithm and which tools have been used are described. In the first section, it is shown the use of numerical libraries for dense and sparse matrices in the semirecursive topological formulation based in the double velocity transformation. In the second one, the use of parallelization by means OpenMP and TBB is depicted in the semi-recursive formulation with penalization and projections. Lastly, the use of sparse matrices and parallelization techniques is described in the global formulation with flexible joints and Euler parameters. Chapter 6 depicts the achieved results through the formulations and implementations previously described. This chapter starts with a description of the modeling and topology of the two vehicles studied. The first model is a two-axle chassis-cabin or van like vehicle, which belongs to the range of medium charge vehicles. The second one is a five-axle vehicle belonging to the truck or cabin semi-trailer model, belonging to the heavy industrial vehicles category. In this chapter, a comparative study is done between the simulations of these vehicles with each one of the formulations used and the improvements achieved are presented in a quantitative way with the different strategies proposed in this Dissertation. With the aim of deducing the conclusions more easily and to evaluate in a more objective way the improvements introduced in the Dissertation, all the results of this chapter have been obtained with the same computer, which was the top one among the Intel Xeon range in 2007, but which is rather obsolete today. Finally, Chapters 7 and 8 are dedicated to the final conclusions and the future research projects that can be derived from the work presented in this Dissertation. The objectives of doing real time simulations in high complex industrial vehicles have been achieved with the formulations and implementations developed.