4 resultados para Modelling lifetime data
em Universidad Politécnica de Madrid
Resumo:
Carbon (C) and nitrogen (N) process-based models are important tools for estimating and reporting greenhouse gas emissions and changes in soil C stocks. There is a need for continuous evaluation, development and adaptation of these models to improve scientific understanding, national inventories and assessment of mitigation options across the world. To date, much of the information needed to describe different processes like transpiration, photosynthesis, plant growth and maintenance, above and below ground carbon dynamics, decomposition and nitrogen mineralization. In ecosystem models remains inaccessible to the wider community, being stored within model computer source code, or held internally by modelling teams. Here we describe the Global Research Alliance Modelling Platform (GRAMP), a web-based modelling platform to link researchers with appropriate datasets, models and training material. It will provide access to model source code and an interactive platform for researchers to form a consensus on existing methods, and to synthesize new ideas, which will help to advance progress in this area. The platform will eventually support a variety of models, but to trial the platform and test the architecture and functionality, it was piloted with variants of the DNDC model. The intention is to form a worldwide collaborative network (a virtual laboratory) via an interactive website with access to models and best practice guidelines; appropriate datasets for testing, calibrating and evaluating models; on-line tutorials and links to modelling and data provider research groups, and their associated publications. A graphical user interface has been designed to view the model development tree and access all of the above functions.
Resumo:
Nowadays, organizations have plenty of data stored in DB databases, which contain invaluable information. Decision Support Systems DSS provide the support needed to manage this information and planning médium and long-term ?the modus operandi? of these organizations. Despite the growing importance of these systems, most proposals do not include its total evelopment, mostly limiting itself on the development of isolated parts, which often have serious integration problems. Hence, methodologies that include models and processes that consider every factor are necessary. This paper will try to fill this void as it proposes an approach for developing spatial DSS driven by the development of their associated Data Warehouse DW, without forgetting its other components. To the end of framing the proposal different Engineering Software focus (The Software Engineering Process and Model Driven Architecture) are used, and coupling with the DB development methodology, (and both of them adapted to DW peculiarities). Finally, an example illustrates the proposal.
Resumo:
Valoración de la transferencia temporal de los modelos de distribución de especies para su aplicación en nuestros días utilizando datos paleobotánicos Corilus avellana y Alnus glutinosa.
Resumo:
In the last decade, multi-sensor data fusion has become a broadly demanded discipline to achieve advanced solutions that can be applied in many real world situations, either civil or military. In Defence,accurate detection of all target objects is fundamental to maintaining situational awareness, to locating threats in the battlefield and to identifying and protecting strategically own forces. Civil applications, such as traffic monitoring, have similar requirements in terms of object detection and reliable identification of incidents in order to ensure safety of road users. Thanks to the appropriate data fusion technique, we can give these systems the power to exploit automatically all relevant information from multiple sources to face for instance mission needs or assess daily supervision operations. This paper focuses on its application to active vehicle monitoring in a particular area of high density traffic, and how it is redirecting the research activities being carried out in the computer vision, signal processing and machine learning fields for improving the effectiveness of detection and tracking in ground surveillance scenarios in general. Specifically, our system proposes fusion of data at a feature level which is extracted from a video camera and a laser scanner. In addition, a stochastic-based tracking which introduces some particle filters into the model to deal with uncertainty due to occlusions and improve the previous detection output is presented in this paper. It has been shown that this computer vision tracker contributes to detect objects even under poor visual information. Finally, in the same way that humans are able to analyze both temporal and spatial relations among items in the scene to associate them a meaning, once the targets objects have been correctly detected and tracked, it is desired that machines can provide a trustworthy description of what is happening in the scene under surveillance. Accomplishing so ambitious task requires a machine learning-based hierarchic architecture able to extract and analyse behaviours at different abstraction levels. A real experimental testbed has been implemented for the evaluation of the proposed modular system. Such scenario is a closed circuit where real traffic situations can be simulated. First results have shown the strength of the proposed system.