38 resultados para Model-based Systems Engineering
em Universidad Politécnica de Madrid
Resumo:
Emotion is generally argued to be an influence on the behavior of life systems, largely concerning flexibility and adaptivity. The way in which life systems acts in response to a particular situations of the environment, has revealed the decisive and crucial importance of this feature in the success of behaviors. And this source of inspiration has influenced the way of thinking artificial systems. During the last decades, artificial systems have undergone such an evolution that each day more are integrated in our daily life. They have become greater in complexity, and the subsequent effects are related to an increased demand of systems that ensure resilience, robustness, availability, security or safety among others. All of them questions that raise quite a fundamental challenges in control design. This thesis has been developed under the framework of the Autonomous System project, a.k.a the ASys-Project. Short-term objectives of immediate application are focused on to design improved systems, and the approaching of intelligence in control strategies. Besides this, long-term objectives underlying ASys-Project concentrate on high order capabilities such as cognition, awareness and autonomy. This thesis is placed within the general fields of Engineery and Emotion science, and provides a theoretical foundation for engineering and designing computational emotion for artificial systems. The starting question that has grounded this thesis aims the problem of emotion--based autonomy. And how to feedback systems with valuable meaning has conformed the general objective. Both the starting question and the general objective, have underlaid the study of emotion, the influence on systems behavior, the key foundations that justify this feature in life systems, how emotion is integrated within the normal operation, and how this entire problem of emotion can be explained in artificial systems. By assuming essential differences concerning structure, purpose and operation between life and artificial systems, the essential motivation has been the exploration of what emotion solves in nature to afterwards analyze analogies for man--made systems. This work provides a reference model in which a collection of entities, relationships, models, functions and informational artifacts, are all interacting to provide the system with non-explicit knowledge under the form of emotion-like relevances. This solution aims to provide a reference model under which to design solutions for emotional operation, but related to the real needs of artificial systems. The proposal consists of a multi-purpose architecture that implement two broad modules in order to attend: (a) the range of processes related to the environment affectation, and (b) the range or processes related to the emotion perception-like and the higher levels of reasoning. This has required an intense and critical analysis beyond the state of the art around the most relevant theories of emotion and technical systems, in order to obtain the required support for those foundations that sustain each model. The problem has been interpreted and is described on the basis of AGSys, an agent assumed with the minimum rationality as to provide the capability to perform emotional assessment. AGSys is a conceptualization of a Model-based Cognitive agent that embodies an inner agent ESys, the responsible of performing the emotional operation inside of AGSys. The solution consists of multiple computational modules working federated, and aimed at conforming a mutual feedback loop between AGSys and ESys. Throughout this solution, the environment and the effects that might influence over the system are described as different problems. While AGSys operates as a common system within the external environment, ESys is designed to operate within a conceptualized inner environment. And this inner environment is built on the basis of those relevances that might occur inside of AGSys in the interaction with the external environment. This allows for a high-quality separate reasoning concerning mission goals defined in AGSys, and emotional goals defined in ESys. This way, it is provided a possible path for high-level reasoning under the influence of goals congruence. High-level reasoning model uses knowledge about emotional goals stability, letting this way new directions in which mission goals might be assessed under the situational state of this stability. This high-level reasoning is grounded by the work of MEP, a model of emotion perception that is thought as an analogy of a well-known theory in emotion science. The work of this model is described under the operation of a recursive-like process labeled as R-Loop, together with a system of emotional goals that are assumed as individual agents. This way, AGSys integrates knowledge that concerns the relation between a perceived object, and the effect which this perception induces on the situational state of the emotional goals. This knowledge enables a high-order system of information that provides the sustain for a high-level reasoning. The extent to which this reasoning might be approached is just delineated and assumed as future work. This thesis has been studied beyond a long range of fields of knowledge. This knowledge can be structured into two main objectives: (a) the fields of psychology, cognitive science, neurology and biological sciences in order to obtain understanding concerning the problem of the emotional phenomena, and (b) a large amount of computer science branches such as Autonomic Computing (AC), Self-adaptive software, Self-X systems, Model Integrated Computing (MIC) or the paradigm of models@runtime among others, in order to obtain knowledge about tools for designing each part of the solution. The final approach has been mainly performed on the basis of the entire acquired knowledge, and described under the fields of Artificial Intelligence, Model-Based Systems (MBS), and additional mathematical formalizations to provide punctual understanding in those cases that it has been required. This approach describes a reference model to feedback systems with valuable meaning, allowing for reasoning with regard to (a) the relationship between the environment and the relevance of the effects on the system, and (b) dynamical evaluations concerning the inner situational state of the system as a result of those effects. And this reasoning provides a framework of distinguishable states of AGSys derived from its own circumstances, that can be assumed as artificial emotion.
Resumo:
Runtime management of distributed information systems is a complex and costly activity. One of the main challenges that must be addressed is obtaining a complete and updated view of all the managed runtime resources. This article presents a monitoring architecture for heterogeneous and distributed information systems. It is composed of two elements: an information model and an agent infrastructure. The model negates the complexity and variability of these systems and enables the abstraction over non-relevant details. The infrastructure uses this information model to monitor and manage the modeled environment, performing and detecting changes in execution time. The agents infrastructure is further detailed and its components and the relationships between them are explained. Moreover, the proposal is validated through a set of agents that instrument the JEE Glassfish application server, paying special attention to support distributed configuration scenarios.
Resumo:
This paper describes new approaches to improve the local and global approximation (matching) and modeling capability of Takagi–Sugeno (T-S) fuzzy model. The main aim is obtaining high function approximation accuracy and fast convergence. The main problem encountered is that T-S identification method cannot be applied when the membership functions are overlapped by pairs. This restricts the application of the T-S method because this type of membership function has been widely used during the last 2 decades in the stability, controller design of fuzzy systems and is popular in industrial control applications. The approach developed here can be considered as a generalized version of T-S identification method with optimized performance in approximating nonlinear functions. We propose a noniterative method through weighting of parameters approach and an iterative algorithm by applying the extended Kalman filter, based on the same idea of parameters’ weighting. We show that the Kalman filter is an effective tool in the identification of T-S fuzzy model. A fuzzy controller based linear quadratic regulator is proposed in order to show the effectiveness of the estimation method developed here in control applications. An illustrative example of an inverted pendulum is chosen to evaluate the robustness and remarkable performance of the proposed method locally and globally in comparison with the original T-S model. Simulation results indicate the potential, simplicity, and generality of the algorithm. An illustrative example is chosen to evaluate the robustness. In this paper, we prove that these algorithms converge very fast, thereby making them very practical to use.
Resumo:
This article describes a knowledge-based method for generating multimedia descriptions that summarize the behavior of dynamic systems. We designed this method for users who monitor the behavior of a dynamic system with the help of sensor networks and make decisions according to prefixed management goals. Our method generates presentations using different modes such as text in natural language, 2D graphics and 3D animations. The method uses a qualitative representation of the dynamic system based on hierarchies of components and causal influences. The method includes an abstraction generator that uses the system representation to find and aggregate relevant data at an appropriate level of abstraction. In addition, the method includes a hierarchical planner to generate a presentation using a model with dis- course patterns. Our method provides an efficient and flexible solution to generate concise and adapted multimedia presentations that summarize thousands of time series. It is general to be adapted to differ- ent dynamic systems with acceptable knowledge acquisition effort by reusing and adapting intuitive rep- resentations. We validated our method and evaluated its practical utility by developing several models for an application that worked in continuous real time operation for more than 1 year, summarizing sen- sor data of a national hydrologic information system in Spain.
Resumo:
Los sistemas técnicos son cada vez más complejos, incorporan funciones más avanzadas, están más integrados con otros sistemas y trabajan en entornos menos controlados. Todo esto supone unas condiciones más exigentes y con mayor incertidumbre para los sistemas de control, a los que además se demanda un comportamiento más autónomo y fiable. La adaptabilidad de manera autónoma es un reto para tecnologías de control actualmente. El proyecto de investigación ASys propone abordarlo trasladando la responsabilidad de la capacidad de adaptación del sistema de los ingenieros en tiempo de diseño al propio sistema en operación. Esta tesis pretende avanzar en la formulación y materialización técnica de los principios de ASys de cognición y auto-consciencia basadas en modelos y autogestión de los sistemas en tiempo de operación para una autonomía robusta. Para ello el trabajo se ha centrado en la capacidad de auto-conciencia, inspirada en los sistemas biológicos, y se ha explorado la posibilidad de integrarla en la arquitectura de los sistemas de control. Además de la auto-consciencia, se han explorado otros temas relevantes: modelado funcional, modelado de software, tecnología de los patrones, tecnología de componentes, tolerancia a fallos. Se ha analizado el estado de la técnica en los ámbitos pertinentes para las cuestiones de la auto-consciencia y la adaptabilidad en sistemas técnicos: arquitecturas cognitivas, control tolerante a fallos, y arquitecturas software dinámicas y computación autonómica. El marco teórico de ASys existente de sistemas autónomos cognitivos ha sido adaptado para servir de base para este análisis de autoconsciencia y adaptación y para dar sustento conceptual al posterior desarrollo de la solución. La tesis propone una solución general de diseño para la construcción de sistemas autónomos auto-conscientes. La idea central es la integración de un meta-controlador en la arquitectura de control del sistema autónomo, capaz de percibir la estado funcional del sistema de control y, si es necesario, reconfigurarlo en tiempo de operación. Esta solución de metacontrol se ha formalizado en cuatro patrones de diseño: i) el Patrón Metacontrol, que define la integración de un subsistema de metacontrol, responsable de controlar al propio sistema de control a través de la interfaz proporcionada por su plataforma de componentes, ii) el patrón Bucle de Control Epistémico, que define un bucle de control cognitivo basado en el modelos y que se puede aplicar al diseño del metacontrol, iii) el patrón de Reflexión basada en Modelo Profundo propone una solución para construir el modelo ejecutable utilizado por el meta-controlador mediante una transformación de modelo a modelo a partir del modelo de ingeniería del sistema, y, finalmente, iv) el Patrón Metacontrol Funcional, que estructura el meta-controlador en dos bucles, uno para el control de la configuración de los componentes del sistema de control, y otro sobre éste, controlando las funciones que realiza dicha configuración de componentes; de esta manera las consideraciones funcionales y estructurales se desacoplan. La Arquitectura OM y el metamodelo TOMASys son las piezas centrales del marco arquitectónico desarrollado para materializar la solución compuesta de los patrones anteriores. El metamodelo TOMASys ha sido desarrollado para la representación de la estructura y su relación con los requisitos funcionales de cualquier sistema autónomo. La Arquitectura OM es un patrón de referencia para la construcción de una metacontrolador integrando los patrones de diseño propuestos. Este meta-controlador se puede integrar en la arquitectura de cualquier sistema control basado en componentes. El elemento clave de su funcionamiento es un modelo TOMASys del sistema decontrol, que el meta-controlador usa para monitorizarlo y calcular las acciones de reconfiguración necesarias para adaptarlo a las circunstancias en cada momento. Un proceso de ingeniería, complementado con otros recursos, ha sido elaborado para guiar la aplicación del marco arquitectónico OM. Dicho Proceso de Ingeniería OM define la metodología a seguir para construir el subsistema de metacontrol para un sistema autónomo a partir del modelo funcional del mismo. La librería OMJava proporciona una implementación del meta-controlador OM que se puede integrar en el control de cualquier sistema autónomo, independientemente del dominio de la aplicación o de su tecnología de implementación. Para concluir, la solución completa ha sido validada con el desarrollo de un robot móvil autónomo que incorpora un meta-controlador con la Arquitectura OM. Las propiedades de auto-consciencia y adaptación proporcionadas por el meta-controlador han sido validadas en diferentes escenarios de operación del robot, en los que el sistema era capaz de sobreponerse a fallos en el sistema de control mediante reconfiguraciones orquestadas por el metacontrolador. ABSTRACT Technical systems are becoming more complex, they incorporate more advanced functionalities, they are more integrated with other systems and they are deployed in less controlled environments. All this supposes a more demanding and uncertain scenario for control systems, which are also required to be more autonomous and dependable. Autonomous adaptivity is a current challenge for extant control technologies. The ASys research project proposes to address it by moving the responsibility for adaptivity from the engineers at design time to the system at run-time. This thesis has intended to advance in the formulation and technical reification of ASys principles of model-based self-cognition and having systems self-handle at runtime for robust autonomy. For that it has focused on the biologically inspired capability of self-awareness, and explored the possibilities to embed it into the very architecture of control systems. Besides self-awareness, other themes related to the envisioned solution have been explored: functional modeling, software modeling, patterns technology, components technology, fault tolerance. The state of the art in fields relevant for the issues of self-awareness and adaptivity has been analysed: cognitive architectures, fault-tolerant control, and software architectural reflection and autonomic computing. The extant and evolving ASys Theoretical Framework for cognitive autonomous systems has been adapted to provide a basement for this selfhood-centred analysis and to conceptually support the subsequent development of our solution. The thesis proposes a general design solution for building self-aware autonomous systems. Its central idea is the integration of a metacontroller in the control architecture of the autonomous system, capable of perceiving the functional state of the control system and reconfiguring it if necessary at run-time. This metacontrol solution has been formalised into four design patterns: i) the Metacontrol Pattern, which defines the integration of a metacontrol subsystem, controlling the domain control system through an interface provided by its implementation component platform, ii) the Epistemic Control Loop pattern, which defines a modelbased cognitive control loop that can be applied to the design of such a metacontroller, iii) the Deep Model Reflection pattern proposes a solution to produce the online executable model used by the metacontroller by model-to-model transformation from the engineering model, and, finally, iv) the Functional Metacontrol pattern, which proposes to structure the metacontroller in two loops, one for controlling the configuration of components of the controller, and another one on top of the former, controlling the functions being realised by that configuration; this way the functional and structural concerns become decoupled. The OM Architecture and the TOMASys metamodel are the core pieces of the architectural framework developed to reify this patterned solution. The TOMASys metamodel has been developed for representing the structure and its relation to the functional requirements of any autonomous system. The OM architecture is a blueprint for building a metacontroller according to the patterns. This metacontroller can be integrated on top of any component-based control architecture. At the core of its operation lies a TOMASys model of the control system. An engineering process and accompanying assets have been constructed to complete and exploit the architectural framework. The OM Engineering Process defines the process to follow to develop the metacontrol subsystem from the functional model of the controller of the autonomous system. The OMJava library provides a domain and application-independent implementation of an OM Metacontroller than can be used in the implementation phase of OMEP. Finally, the complete solution has been validated in the development of an autonomous mobile robot that incorporates an OM metacontroller. The functional selfawareness and adaptivity properties achieved thanks to the metacontrol system have been validated in different scenarios. In these scenarios the robot was able to overcome failures in the control system thanks to reconfigurations performed by the metacontroller.
Resumo:
Cooperative systems are suitable for many types of applications and nowadays these system are vastly used to improve a previously defined system or to coordinate multiple devices working together. This paper provides an alternative to improve the reliability of a previous intelligent identification system. The proposed approach implements a cooperative model based on multi-agent architecture. This new system is composed of several radar-based systems which identify a detected object and transmit its own partial result by implementing several agents and by using a wireless network to transfer data. The proposed topology is a centralized architecture where the coordinator device is in charge of providing the final identification result depending on the group behavior. In order to find the final outcome, three different mechanisms are introduced. The simplest one is based on majority voting whereas the others use two different weighting voting procedures, both providing the system with learning capabilities. Using an appropriate network configuration, the success rate can be improved from the initial 80% up to more than 90%.
Resumo:
This article analyzes the progress of Industrial Engineering in Peru, the relationship to major trends in Europe and North America, and the projected outlook for the future. It is determined that the need for this engineering specialty includes a significant degree of resource management, and the formation of engineers through education requires not only the acquisition and strengthening of technical knowledge, but also the development of the competences that are required by both employers and the recipients of the benefits of engineering: society. Conclusions have been drawn based on state-of-the-art analyses from Europe and North America, and definitions of trends for engineering.
Resumo:
The confluence of three-dimensional (3D) virtual worlds with social networks imposes on software agents, in addition to conversational functions, the same behaviours as those common to human-driven avatars. In this paper, we explore the possibilities of the use of metabots (metaverse robots) with motion capabilities in complex virtual 3D worlds and we put forward a learning model based on the techniques used in evolutionary computation for optimizing the fuzzy controllers which will subsequently be used by metabots for moving around a virtual environment.
Resumo:
Models are an effective tool for systems and software design. They allow software architects to abstract from the non-relevant details. Those qualities are also useful for the technical management of networks, systems and software, such as those that compose service oriented architectures. Models can provide a set of well-defined abstractions over the distributed heterogeneous service infrastructure that enable its automated management. We propose to use the managed system as a source of dynamically generated runtime models, and decompose management processes into a composition of model transformations. We have created an autonomic service deployment and configuration architecture that obtains, analyzes, and transforms system models to apply the required actions, while being oblivious to the low-level details. An instrumentation layer automatically builds these models and interprets the planned management actions to the system. We illustrate these concepts with a distributed service update operation.
Resumo:
Solar drying is one of the important processes used for extending the shelf life of agricultural products. Regarding consumer requirements, solar drying should be more suitable in terms of curtailing total drying time and preserving product quality. Therefore, the objective of this study was to develop a fuzzy logic-based control system, which performs a ?human-operator-like? control approach through using the previously developed low-cost model-based sensors. Fuzzy logic toolbox of MatLab and Borland C++ Builder tool were utilized to develop a required control system. An experimental solar dryer, constructed by CONA SOLAR (Austria) was used during the development of the control system. Sensirion sensors were used to characterize the drying air at different positions in the dryer, and also the smart sensor SMART-1 was applied to be able to include the rate of wood water extraction into the control system (the difference of absolute humidity of the air between the outlet and the inlet of solar dryer is considered by SMART-1 to be the extracted water). A comprehensive test over a 3 week period for different fuzzy control models has been performed, and data, obtained from these experiments, were analyzed. Findings from this study would suggest that the developed fuzzy logic-based control system is able to tackle difficulties, related to the control of solar dryer process.
Resumo:
Como en todos los medios de transporte, la seguridad en los viajes en avión es de primordial importancia. Con los aumentos de tráfico aéreo previstos en Europa para la próxima década, es evidente que el riesgo de accidentes necesita ser evaluado y monitorizado cuidadosamente de forma continúa. La Tesis presente tiene como objetivo el desarrollo de un modelo de riesgo de colisión exhaustivo como método para evaluar el nivel de seguridad en ruta del espacio aéreo europeo, considerando todos los factores de influencia. La mayor limitación en el desarrollo de metodologías y herramientas de monitorización adecuadas para evaluar el nivel de seguridad en espacios de ruta europeos, donde los controladores aéreos monitorizan el tráfico aéreo mediante la vigilancia radar y proporcionan instrucciones tácticas a las aeronaves, reside en la estimación del riesgo operacional. Hoy en día, la estimación del riesgo operacional está basada normalmente en reportes de incidentes proporcionados por el proveedor de servicios de navegación aérea (ANSP). Esta Tesis propone un nuevo e innovador enfoque para evaluar el nivel de seguridad basado exclusivamente en el procesamiento y análisis trazas radar. La metodología propuesta ha sido diseñada para complementar la información recogida en las bases de datos de accidentes e incidentes, mediante la provisión de información robusta de los factores de tráfico aéreo y métricas de seguridad inferidas del análisis automático en profundidad de todos los eventos de proximidad. La metodología 3-D CRM se ha implementado en un prototipo desarrollado en MATLAB © para analizar automáticamente las trazas radar y planes de vuelo registrados por los Sistemas de Procesamiento de Datos Radar (RDP) e identificar y analizar todos los eventos de proximidad (conflictos, conflictos potenciales y colisiones potenciales) en un periodo de tiempo y volumen del espacio aéreo. Actualmente, el prototipo 3-D CRM está siendo adaptado e integrado en la herramienta de monitorización de prestaciones de Aena (PERSEO) para complementar las bases de accidentes e incidentes ATM y mejorar la monitorización y proporcionar evidencias de los niveles de seguridad. ABSTRACT As with all forms of transport, the safety of air travel is of paramount importance. With the projected increases in European air traffic in the next decade and beyond, it is clear that the risk of accidents needs to be assessed and carefully monitored on a continuing basis. The present thesis is aimed at the development of a comprehensive collision risk model as a method of assessing the European en-route risk, due to all causes and across all dimensions within the airspace. The major constraint in developing appropriate monitoring methodologies and tools to assess the level of safety in en-route airspaces where controllers monitor air traffic by means of radar surveillance and provide aircraft with tactical instructions lies in the estimation of the operational risk. The operational risk estimate normally relies on incident reports provided by the air navigation service providers (ANSPs). This thesis proposes a new and innovative approach to assessing aircraft safety level based exclusively upon the process and analysis of radar tracks. The proposed methodology has been designed to complement the information collected in the accident and incident databases, thereby providing robust information on air traffic factors and safety metrics inferred from the in depth assessment of proximate events. The 3-D CRM methodology is implemented in a prototype tool in MATLAB © in order to automatically analyze recorded aircraft tracks and flight plan data from the Radar Data Processing systems (RDP) and identify and analyze all proximate events (conflicts, potential conflicts and potential collisions) within a time span and a given volume of airspace. Currently, the 3D-CRM prototype is been adapted and integrated in AENA’S Performance Monitoring Tool (PERSEO) to complement the information provided by the ATM accident and incident databases and to enhance monitoring and providing evidence of levels of safety.
Resumo:
The aim of this chapter is to discuss the applicability of recently proposed knowledge modelling tools to the development of agent-based systems. The discussion is derived from the real world experience of a particular software tool called KSM (Knowledge Structure Manager). The chapter provides details about this tool and then proceeds to show in which forms the software may be used to support the development of agent-based systems. Two multiagent systems, one in the field of telecommunications management and the other one in the field of flood control, are described. Conclusions about these studies are presented, summarizing the main contributions that knowledge modelling tools can bring to the development of agent-based systems.
Resumo:
Maximizing energy autonomy is a consistent challenge when deploying mobile robots in ionizing radiation or other hazardous environments. Having a reliable robot system is essential for successful execution of missions and to avoid manual recovery of the robots in environments that are harmful to human beings. For deployment of robots missions at short notice, the ability to know beforehand the energy required for performing the task is essential. This paper presents a on-line method for predicting energy requirements based on the pre-determined power models for a mobile robot. A small mobile robot, Khepera III is used for the experimental study and the results are promising with high prediction accuracy. The applications of the energy prediction models in energy optimization and simulations are also discussed along with examples of significant energy savings.
Resumo:
Debido al gran incremento de datos digitales que ha tenido lugar en los últimos años, ha surgido un nuevo paradigma de computación paralela para el procesamiento eficiente de grandes volúmenes de datos. Muchos de los sistemas basados en este paradigma, también llamados sistemas de computación intensiva de datos, siguen el modelo de programación de Google MapReduce. La principal ventaja de los sistemas MapReduce es que se basan en la idea de enviar la computación donde residen los datos, tratando de proporcionar escalabilidad y eficiencia. En escenarios libres de fallo, estos sistemas generalmente logran buenos resultados. Sin embargo, la mayoría de escenarios donde se utilizan, se caracterizan por la existencia de fallos. Por tanto, estas plataformas suelen incorporar características de tolerancia a fallos y fiabilidad. Por otro lado, es reconocido que las mejoras en confiabilidad vienen asociadas a costes adicionales en recursos. Esto es razonable y los proveedores que ofrecen este tipo de infraestructuras son conscientes de ello. No obstante, no todos los enfoques proporcionan la misma solución de compromiso entre las capacidades de tolerancia a fallo (o de manera general, las capacidades de fiabilidad) y su coste. Esta tesis ha tratado la problemática de la coexistencia entre fiabilidad y eficiencia de los recursos en los sistemas basados en el paradigma MapReduce, a través de metodologías que introducen el mínimo coste, garantizando un nivel adecuado de fiabilidad. Para lograr esto, se ha propuesto: (i) la formalización de una abstracción de detección de fallos; (ii) una solución alternativa a los puntos únicos de fallo de estas plataformas, y, finalmente, (iii) un nuevo sistema de asignación de recursos basado en retroalimentación a nivel de contenedores. Estas contribuciones genéricas han sido evaluadas tomando como referencia la arquitectura Hadoop YARN, que, hoy en día, es la plataforma de referencia en la comunidad de los sistemas de computación intensiva de datos. En la tesis se demuestra cómo todas las contribuciones de la misma superan a Hadoop YARN tanto en fiabilidad como en eficiencia de los recursos utilizados. ABSTRACT Due to the increase of huge data volumes, a new parallel computing paradigm to process big data in an efficient way has arisen. Many of these systems, called dataintensive computing systems, follow the Google MapReduce programming model. The main advantage of these systems is based on the idea of sending the computation where the data resides, trying to provide scalability and efficiency. In failure-free scenarios, these frameworks usually achieve good results. However, these ones are not realistic scenarios. Consequently, these frameworks exhibit some fault tolerance and dependability techniques as built-in features. On the other hand, dependability improvements are known to imply additional resource costs. This is reasonable and providers offering these infrastructures are aware of this. Nevertheless, not all the approaches provide the same tradeoff between fault tolerant capabilities (or more generally, reliability capabilities) and cost. In this thesis, we have addressed the coexistence between reliability and resource efficiency in MapReduce-based systems, looking for methodologies that introduce the minimal cost and guarantee an appropriate level of reliability. In order to achieve this, we have proposed: (i) a formalization of a failure detector abstraction; (ii) an alternative solution to single points of failure of these frameworks, and finally (iii) a novel feedback-based resource allocation system at the container level. Finally, our generic contributions have been instantiated for the Hadoop YARN architecture, which is the state-of-the-art framework in the data-intensive computing systems community nowadays. The thesis demonstrates how all our approaches outperform Hadoop YARN in terms of reliability and resource efficiency.
Resumo:
This thesis deals with the problem of efficiently tracking 3D objects in sequences of images. We tackle the efficient 3D tracking problem by using direct image registration. This problem is posed as an iterative optimization procedure that minimizes a brightness error norm. We review the most popular iterative methods for image registration in the literature, turning our attention to those algorithms that use efficient optimization techniques. Two forms of efficient registration algorithms are investigated. The first type comprises the additive registration algorithms: these algorithms incrementally compute the motion parameters by linearly approximating the brightness error function. We centre our attention on Hager and Belhumeur’s factorization-based algorithm for image registration. We propose a fundamental requirement that factorization-based algorithms must satisfy to guarantee good convergence, and introduce a systematic procedure that automatically computes the factorization. Finally, we also bring out two warp functions to register rigid and nonrigid 3D targets that satisfy the requirement. The second type comprises the compositional registration algorithms, where the brightness function error is written by using function composition. We study the current approaches to compositional image alignment, and we emphasize the importance of the Inverse Compositional method, which is known to be the most efficient image registration algorithm. We introduce a new algorithm, the Efficient Forward Compositional image registration: this algorithm avoids the necessity of inverting the warping function, and provides a new interpretation of the working mechanisms of the inverse compositional alignment. By using this information, we propose two fundamental requirements that guarantee the convergence of compositional image registration methods. Finally, we support our claims by using extensive experimental testing with synthetic and real-world data. We propose a distinction between image registration and tracking when using efficient algorithms. We show that, depending whether the fundamental requirements are hold, some efficient algorithms are eligible for image registration but not for tracking.