23 resultados para Model Testing

em Universidad Politécnica de Madrid


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Self-consciousness implies not only self or group recognition, but also real knowledge of one’s own identity. Self-consciousness is only possible if an individual is intelligent enough to formulate an abstract self-representation. Moreover, it necessarily entails the capability of referencing and using this elf-representation in connection with other cognitive features, such as inference, and the anticipation of the consequences of both one’s own and other individuals’ acts. In this paper, a cognitive architecture for self-consciousness is proposed. This cognitive architecture includes several modules: abstraction, self-representation, other individuals'representation, decision and action modules. It includes a learning process of self-representation by direct (self-experience based) and observational learning (based on the observation of other individuals). For model implementation a new approach is taken using Modular Artificial Neural Networks (MANN). For model testing, a virtual environment has been implemented. This virtual environment can be described as a holonic system or holarchy, meaning that it is composed of autonomous entities that behave both as a whole and as part of a greater whole. The system is composed of a certain number of holons interacting. These holons are equipped with cognitive features, such as sensory perception, and a simplified model of personality and self-representation. We explain holons’ cognitive architecture that enables dynamic self-representation. We analyse the effect of holon interaction, focusing on the evolution of the holon’s abstract self-representation. Finally, the results are explained and analysed and conclusions drawn.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Los requisitos cada vez más exigentes en cuanto a misiones, limitaciones operacionales y ambientales así como nuevas tecnologías, imponen permanentemente retos a los arquitectos navales para generar alternativas de buques y valorar su bondad en las primeras etapas del proyecto. Este es el caso de los Buques Patrulleros de Apoyo Fluvial Pesados PAF-P, que por requerimiento de la Armada Nacional de Colombia ha diseñado y construido COTECMAR. Los PAF-P, son buques fluviales cuya relación Manga-Calado excede la mayoría de los buques existentes (B/T=9,5), debido principalmente a las restricciones en el calado a consecuencia de la escasa profundidad de los ríos. Estos buques están equipados con sistemas de propulsión acimutales tipo “Pum-Jet”. Las particularidades del buque y del ambiente operacional, caracterizado por ríos tropicales con una variabilidad de profundidad dependiente del régimen de lluvias y sequía, así como la falta de canalización y la corriente, hacen que la maniobrabilidad y controlabilidad sean fundamentales para el cumplimiento de su misión; adicionalmente, no existen modelos matemáticos validados que permitan predecir en las primeras etapas del diseño la maniobrabilidad de este tipo de buques con los efectos asociados por profundidad. La presente tesis doctoral aborda el desarrollo de un modelo matemático para simulación de maniobrabilidad en aguas poco profundas de buques con relación manga-calado alta y con propulsores acimutales tipo “Pump-Jet”, cuyo chorro además de entregar el empuje necesario para el avance del buque, genera la fuerza de gobierno en función del ángulo de orientación del mismo, eliminando la necesidad de timones. El modelo matemático ha sido validado mediante los resultados obtenidos en las pruebas de maniobrabilidad a escala real del PAF-P, a través de la comparación de trayectorias, series temporales de las variables de estado más significativas y parámetros del círculo evolutivo como son diámetro de giro, diámetro táctico, avance y transferencia. El plan de pruebas se basó en técnicas de Diseño de Experimentos “DOE” para racionalizar el número de corridas en diferentes condiciones de profundidad, velocidad y orientación del chorro (ángulo de timón). En el marco de la presente investigación y para minimizar los errores por efectos ambientales y por inexactitud en los instrumentos de medición, se desarrolló un sistema de adquisición y procesamiento de datos de acuerdo con los lineamientos de ITTC. La literatura existente describe los efectos negativos de la profundidad en los parámetros de maniobrabilidad de buques convencionales (Efecto tipo S), principalmente las trayectorias descritas en los círculos evolutivos aumentan en la medida que disminuye la profundidad; no obstante, en buques de alta relación manga-calado, B/T=7,51 (Yoshimura, y otros, 1.988) y B/T=6,38 (Yasukawa, y otros, 1.995) ha sido reportado el efecto contrario (Efecto tipo NS Non Standart). Este último efecto sin embargo, ha sido observado mediante experimentación con modelos a escala pero no ha sido validado en pruebas de buques a escala real. El efecto tipo NS en buques dotados con hélice y timones, se atribuye al mayor incremento de la fuerza del timón comparativamente con las fuerzas del casco en la medida que disminuye la profundidad; en el caso de estudio, el fenómeno está asociado a la mejor eficiencia de la bomba de agua “Pump-Jet”, debido a la resistencia añadida en el casco por efecto de la disminución de la profundidad. Los resultados de las pruebas con buque a escala real validan el excelente desempeño de esta clase de buques, cumpliendo en exceso los criterios de maniobrabilidad existentes y muestran que el diámetro de giro y otras características de maniobrabilidad mejoran con la disminución de la profundidad en buques con alta relación manga-calado. ABSTRACT The increasingly demanding requirements in terms of missions, operational and environmental constraints as well as new technologies, constantly impose challenges to naval architects to generate alternatives and asses their performance in the early stages of design. That is the case of Riverine Support Patrol Vessel (RSPV), designed and built by COTECMAR for the Colombian Navy. RSPV are riverine ships with a Beam-Draft ratio exceeding most of existing ships (B/T=9,5), mainly due to the restrictions in draft as a result of shallow water environment. The ships are equipped with azimuthal propulsion system of the “Pump-Jet” type. The peculiarities of the ship and the operational environment, characterized by tropical rivers of variable depth depending on the rain and dry seasons, as well as the lack channels and the effect of water current, make manoeuvrability and controllability fundamental to fulfill its mission; on the other hand, there are not validated mathematical models available to predict the manoeuvrability of such ships with the associated water depth effects in the early stages of design. This dissertation addresses the development of a mathematical model for shallow waters’ manoeuvrability simulation of ships with high Beam-Draft ratio and azimuthal propulsion systems type “Pump-Jet”, whose stream generates the thrust required by the ship to advance and also the steering force depending on the orientation angle, eliminating the need of rudders. The mathematical model has been validated with the results of RSPV’s full scale manoeuvring tests, through a comparison of paths, time series of state variables and other parameters taken from turning tests, such as turning diameter, tactical diameter, advance and transfer. The test plan was developed applying techniques of Design of Experiments “DOE”, in order to rationalize the number of runs in different conditions of water depth, ship speed and jet stream orientation (rudder angle). A data acquisition and processing system was developed, following the guidelines of ITTC, as part of this research effort, in order to minimize errors by environmental effects and inaccuracy in measurement instruments, The negative effects of depth on manoeuvrability parameters for conventional ships (Effect Type S: the path described by the ship during turning test increase with decrease of water depth), has been documented in the open literature; however for wide-beam ships, B/T=7,51 (Yoshimura, y otros, 1.988) and B/T=6,38 (Yasukawa, y otros, 1.995) has been reported the opposite effect (Type NS). The latter effect has been observed thru model testing but until now had not been validated with full-scale results. In ships with propellers and rudders, type NS effect is due to the fact that increment of rudder force becomes larger than hull force with decrease of water depth; in the study case, the phenomenon is associated with better efficiency of the Pump-Jet once the vessel speed becomes lower, due to hull added resistance by the effect of the decrease of water depth. The results of full scale tests validates the excellent performance of this class of ships, fulfilling the manoeuvrability criteria in excess and showing that turning diameter and other parameters in high beam-draft ratio vessels do improve with the decrease of depth.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Software testing is a key aspect of software reliability and quality assurance in a context where software development constantly has to overcome mammoth challenges in a continuously changing environment. One of the characteristics of software testing is that it has a large intellectual capital component and can thus benefit from the use of the experience gained from past projects. Software testing can, then, potentially benefit from solutions provided by the knowledge management discipline. There are in fact a number of proposals concerning effective knowledge management related to several software engineering processes. Objective: We defend the use of a lesson learned system for software testing. The reason is that such a system is an effective knowledge management resource enabling testers and managers to take advantage of the experience locked away in the brains of the testers. To do this, the experience has to be gathered, disseminated and reused. Method: After analyzing the proposals for managing software testing experience, significant weaknesses have been detected in the current systems of this type. The architectural model proposed here for lesson learned systems is designed to try to avoid these weaknesses. This model (i) defines the structure of the software testing lessons learned; (ii) sets up procedures for lesson learned management; and (iii) supports the design of software tools to manage the lessons learned. Results: A different approach, based on the management of the lessons learned that software testing engineers gather from everyday experience, with two basic goals: usefulness and applicability. Conclusion: The architectural model proposed here lays the groundwork to overcome the obstacles to sharing and reusing experience gained in the software testing and test management. As such, it provides guidance for developing software testing lesson learned systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In order to achieve to minimize car-based trips, transport planners have been particularly interested in understanding the factors that explain modal choices. In the transport modelling literature there has been an increasing awareness that socioeconomic attributes and quantitative variables are not sufficient to characterize travelers and forecast their travel behavior. Recent studies have also recognized that users? social interactions and land use patterns influence travel behavior, especially when changes to transport systems are introduced, but links between international and Spanish perspectives are rarely deal. In this paper, factorial and path analyses through a Multiple-Indicator Multiple-Cause (MIMIC) model are used to understand and describe the relationship between the different psychological and environmental constructs with social influence and socioeconomic variables. The MIMIC model generates Latent Variables (LVs) to be incorporated sequentially into Discrete Choice Models (DCM) where the levels of service and cost attributes of travel modes are also included directly to measure the effect of the transport policies that have been introduced in Madrid during the last three years in the context of the economic crisis. The data used for this paper are collected from a two panel smartphone-based survey (n=255 and 190 respondents, respectively) of Madrid.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mapping aboveground carbon density in tropical forests can support CO2 emissionmonitoring and provide benefits for national resource management. Although LiDAR technology has been shown to be useful for assessing carbon density patterns, the accuracy and generality of calibrations of LiDAR-based aboveground carbon density (ACD) predictions with those obtained from field inventory techniques should be intensified in order to advance tropical forest carbon mapping. Here we present results from the application of a general ACD estimation model applied with small-footprint LiDAR data and field-based estimates of a 50-ha forest plot in Ecuador?s Yasuní National Park. Subplots used for calibration and validation of the general LiDAR equation were selected based on analysis of topographic position and spatial distribution of aboveground carbon stocks. The results showed that stratification of plot locations based on topography can improve the calibration and application of ACD estimation using airborne LiDAR (R2 = 0.94, RMSE = 5.81 Mg?C? ha?1, BIAS = 0.59). These results strongly suggest that a general LiDAR-based approach can be used for mapping aboveground carbon stocks in western lowland Amazonian forests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis deals with the problem of efficiently tracking 3D objects in sequences of images. We tackle the efficient 3D tracking problem by using direct image registration. This problem is posed as an iterative optimization procedure that minimizes a brightness error norm. We review the most popular iterative methods for image registration in the literature, turning our attention to those algorithms that use efficient optimization techniques. Two forms of efficient registration algorithms are investigated. The first type comprises the additive registration algorithms: these algorithms incrementally compute the motion parameters by linearly approximating the brightness error function. We centre our attention on Hager and Belhumeur’s factorization-based algorithm for image registration. We propose a fundamental requirement that factorization-based algorithms must satisfy to guarantee good convergence, and introduce a systematic procedure that automatically computes the factorization. Finally, we also bring out two warp functions to register rigid and nonrigid 3D targets that satisfy the requirement. The second type comprises the compositional registration algorithms, where the brightness function error is written by using function composition. We study the current approaches to compositional image alignment, and we emphasize the importance of the Inverse Compositional method, which is known to be the most efficient image registration algorithm. We introduce a new algorithm, the Efficient Forward Compositional image registration: this algorithm avoids the necessity of inverting the warping function, and provides a new interpretation of the working mechanisms of the inverse compositional alignment. By using this information, we propose two fundamental requirements that guarantee the convergence of compositional image registration methods. Finally, we support our claims by using extensive experimental testing with synthetic and real-world data. We propose a distinction between image registration and tracking when using efficient algorithms. We show that, depending whether the fundamental requirements are hold, some efficient algorithms are eligible for image registration but not for tracking.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a simple mathematical model to estimateshadinglosses on PVarrays. The model is applied directly to power calculations, without the need to consider the whole current–voltage curve. This allows the model to be used with common yield estimation software. The model takes into account both the shaded fraction of the array area and the number of blocks (a group of solar cells protected by a bypass diode) affected by shade. The results of an experimental testing campaign on several shaded PVarrays to check the validity of model are also reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Belief propagation (BP) is a technique for distributed inference in wireless networks and is often used even when the underlying graphical model contains cycles. In this paper, we propose a uniformly reweighted BP scheme that reduces the impact of cycles by weighting messages by a constant ?edge appearance probability? rho ? 1. We apply this algorithm to distributed binary hypothesis testing problems (e.g., distributed detection) in wireless networks with Markov random field models. We demonstrate that in the considered setting the proposed method outperforms standard BP, while maintaining similar complexity. We then show that the optimal ? can be approximated as a simple function of the average node degree, and can hence be computed in a distributed fashion through a consensus algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a simple mathematical model to estimate shading losses on PV arrays. The model is applied directly to power calculations, without the need to consider the whole current–voltage curve. This allows the model to be used with common yield estimation software. The model takes into account both the shaded fraction of the array area and the number of blocks (a group of solar cells protected by a bypass diode) affected by shade. The results of an experimental testing campaign on several shaded PV arrays to check the validity of model are also reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports a packaging and calibration procedure for surface mounting of fiber Bragg grating (FBG) sensors to measure strain in rocks. The packaging of FBG sensors is performed with glass fiber and polyester resin, and then subjected to tensile loads in order to obtain strength and deformability parameters, necessaries to assess the mechanical performance of the sensor packaging. For a specific package, an optimal curing condition has been found, showing good repeatability and adaptability for non-planar surfaces, such as occurs in rock engineering. The successfully packaged sensors and electrical strain gages were attached to standard rock specimens of gabbro. Longitudinal and transversal strains under compression loads were measured with both techniques, showing that response of FBG sensors is linear and reliable. An analytical model is used to characterize the influences of rock substrate and FBG packaging in strain transmission. As a result, we obtained a sensor packaging for non-planar and complex natural material under acceptable sensitivity suitable for very small strains as occurs in hard rocks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Satellites and space equipment are exposed to diffuse acoustic fields during the launch process. The use of adequate techniques to model the response to the acoustic loads is a fundamental task during the design and verification phases. Considering the modal density of each element is necessary to identify the correct methodology. In this report selection criteria are presented in order to choose the correct modelling technique depending on the frequency ranges. A model satellite’s response to acoustic loads is presented, determining the modal densities of each component in different frequency ranges. The paper proposes to select the mathematical method in each modal density range and the differences in the response estimation due to the different used techniques. In addition, the methodologies to analyse the intermediate range of the system are discussed. The results are compared with experimental testing data obtained in an experimental modal test.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Padding materials are commonly used in fruit packing lines with the objective of diminishing impact damage in postharvest handling. Two sensors, instrumented sphere IS 100 and impact tester, have been compared to analyze the performance of six different padding materials used in Spanish fruit packing lines. Padding materials tested have been classified according to their capability to decrease impact intensities inflicted to fruit in packing lines. A procedure to test padding materials has been developed for "Golden" apples. Its basis is a logistic regression to predict bruise probability in fruit. The model combines two kinds of parameters: padding material parameters measured with IS, and fruit properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Following the Integrated Water Resources Management approach, the European Water Framework Directive demands Member States to develop water management plans at the catchment level. Those plans have to integrate the different interests and must be developed with stakeholder participation. To face these requirements, managers need tools to assess the impacts of possible management alternatives on natural and socio-economic systems. These tools should ideally be able to address the complexity and uncertainties of the water system, while serving as a platform for stakeholder participation. The objective of our research was to develop a participatory integrated assessment model, based on the combination of a crop model, an economic model and a participatory Bayesian network, with an application in the middle Guadiana sub-basin, in Spain. The methodology is intended to capture the complexity of water management problems, incorporating the relevant sectors, as well as the relevant scales involved in water management decision making. The integrated model has allowed us testing different management, market and climate change scenarios and assessing the impacts of such scenarios on the natural system (crops), on the socio-economic system (farms) and on the environment (water resources). Finally, this integrated assessment modelling process has allowed stakeholder participation, complying with the main requirements of current European water laws.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives The study sought to evaluate the ability of cardiac magnetic resonance (CMR) to monitor acute and long-term changes in pulmonary vascular resistance (PVR) noninvasively. Background PVR monitoring during the follow-up of patients with pulmonary hypertension (PH) and the response to vasodilator testing require invasive right heart catheterization. Methods An experimental study in pigs was designed to evaluate the ability of CMR to monitor: 1) an acute increase in PVR generated by acute pulmonary embolization (n = 10); 2) serial changes in PVR in chronic PH (n = 22); and 3) changes in PVR during vasodilator testing in chronic PH (n = 10). CMR studies were performed with simultaneous hemodynamic assessment using a CMR-compatible Swan-Ganz catheter. Average flow velocity in the main pulmonary artery (PA) was quantified with phase contrast imaging. Pearson correlation and mixed model analysis were used to correlate changes in PVR with changes in CMR-quantified PA velocity. Additionally, PVR was estimated from CMR data (PA velocity and right ventricular ejection fraction) using a formula previously validated. Results Changes in PA velocity strongly and inversely correlated with acute increases in PVR induced by pulmonary embolization (r = –0.92), serial PVR fluctuations in chronic PH (r = –0.89), and acute reductions during vasodilator testing (r = –0.89, p ≤ 0.01 for all). CMR-estimated PVR showed adequate agreement with invasive PVR (mean bias –1.1 Wood units,; 95% confidence interval: –5.9 to 3.7) and changes in both indices correlated strongly (r = 0.86, p < 0.01). Conclusions CMR allows for noninvasive monitoring of acute and chronic changes in PVR in PH. This capability may be valuable in the evaluation and follow-up of patients with PH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent developments in the area of multiscale modeling of fiber-reinforced polymers are presented. The overall strategy takes advantage of the separa-tion of length scales between different entities (ply, laminate, and component) found in composite structures. This allows us to carry out multiscale modeling by computing the properties of one entity (e.g., individual plies) at the relevant length scale, homogenizing the results into a constitutive model, and passing this information to the next length scale to determine the mechanical behavior of the larger entity (e.g., laminate). As a result, high-fidelity numerical sim-ulations of the mechanical behavior of composite coupons and small compo-nents are nowadays feasible starting from the matrix, fiber, and interface properties and spatial distribution. Finally, the roadmap is outlined for extending the current strategy to include functional properties and processing into the simulation scheme.