6 resultados para Mobile interfaces
em Universidad Politécnica de Madrid
Resumo:
Interaction with smart objects can be accomplished with different technologies, such as tangible interfaces or touch computing, among others. Some of them require the object to be especially designed to be 'smart', and some other are limited in the variety and complexity of the possible actions. This paper describes a user-smart object interaction model and prototype based on the well known event-condition-action (ECA) reasoning, which can work, to a degree, independently of the intelligence embedded into the smart object. It has been designed for mobile devices to act as mediators between users and smart objects and provides an intuitive means for personalization of object's behavior. When the user is close to an object, this one publishes its 'event & action' capabilities to the user's device. The user may accept the object's module offering, which will enable him to configure and control that object, but also its actions with respect to other elements of the environment or the virtual world. The modular ECA interaction model facilitates the integration of different types of objects in a smart space, giving the user full control of their capabilities and facilitating creative mash-uping to build customized functionalities that combine physical and virtual actions
Resumo:
Exploiting the full potential of telemedical systems means using platform based solutions: data are recovered from biomedical sensors, hospital information systems, care-givers, as well as patients themselves, and are processed and redistributed in an either centralized or, more probably, decentralized way. The integration of all these different devices, and interfaces, as well as the automated analysis and representation of all the pieces of information are current key challenges in telemedicine. Mobile phone technology has just begun to offer great opportunities of using this diverse information for guiding, warning, and educating patients, thus increasing their autonomy and adherence to their prescriptions. However, most of these existing mobile solutions are not based on platform systems and therefore represent limited, isolated applications. This article depicts how telemedical systems, based on integrated health data platforms, can maximize prescription adherence in chronic patients through mobile feedback. The application described here has been developed in an EU-funded R&D project called METABO, dedicated to patients with type 1 or type 2 Diabetes Mellitus
Resumo:
Los sistemas de recomendación son potentes herramientas de filtrado de información que permiten a usuarios solicitar sugerencias sobre ítems que cubran sus necesidades. Tradicionalmente estas recomendaciones han estado basadas en opiniones de los mismos, así como en datos obtenidos de su consumo histórico o comportamiento en el propio sistema. Sin embargo, debido a la gran penetración y uso de los dispositivos móviles en nuestra sociedad, han surgido nuevas oportunidades en el campo de los sistemas de recomendación móviles gracias a la información contextual que se puede obtener sobre la localización o actividad de los usuarios. Debido a este estilo de vida en el que todo tiende a la movilidad y donde los usuarios están plenamente interconectados, la información contextual no sólo es física, sino que también adquiere una dimensión social. Todo esto ha dado lugar a una nueva área de investigación relacionada con los Sistemas de Recomendación Basados en Contexto (CARS) móviles donde se busca incrementar el nivel de personalización de las recomendaciones al usar dicha información. Por otro lado, este nuevo escenario en el que los usuarios llevan en todo momento un terminal móvil consigo abre la puerta a nuevas formas de recomendar. Sustituir el tradicional patrón de uso basado en petición-respuesta para evolucionar hacia un sistema proactivo es ahora posible. Estos sistemas deben identificar el momento más adecuado para generar una recomendación sin una petición explícita del usuario, siendo para ello necesario analizar su contexto. Esta tesis doctoral propone un conjunto de modelos, algoritmos y métodos orientados a incorporar proactividad en CARS móviles, a la vez que se estudia el impacto que este tipo de recomendaciones tienen en la experiencia de usuario con el fin de extraer importantes conclusiones sobre "qué", "cuándo" y "cómo" se debe notificar proactivamente. Con este propósito, se comienza planteando una arquitectura general para construir CARS móviles en escenarios sociales. Adicionalmente, se propone una nueva forma de representar el proceso de recomendación a través de una interfaz REST, lo que permite crear una arquitectura independiente de dispositivo y plataforma. Los detalles de su implementación tras su puesta en marcha en el entorno bancario español permiten asimismo validar el sistema construido. Tras esto se presenta un novedoso modelo para incorporar proactividad en CARS móviles. Éste muestra las ideas principales que permiten analizar una situación para decidir cuándo es apropiada una recomendación proactiva. Para ello se presentan algoritmos que establecen relaciones entre lo propicia que es una situación y cómo esto influye en los elementos a recomendar. Asimismo, para demostrar la viabilidad de este modelo se describe su aplicación a un escenario de recomendación para herramientas de creación de contenidos educativos. Siguiendo el modelo anterior, se presenta el diseño e implementación de nuevos interfaces móviles de usuario para recomendaciones proactivas, así como los resultados de su evaluación entre usuarios, lo que aportó importantes conclusiones para identificar cuáles son los factores más relevantes a considerar en el diseño de sistemas proactivos. A raíz de los resultados anteriores, el último punto de esta tesis presenta una metodología para calcular cuán apropiada es una situación de cara a recomendar de manera proactiva siguiendo el modelo propuesto. Como conclusión, se describe la validación llevada a cabo tras la aplicación de la arquitectura, modelo de recomendación y métodos descritos en este trabajo en una red social de aprendizaje europea. Finalmente, esta tesis discute las conclusiones obtenidas a lo largo de la extensa investigación llevada a cabo, y que ha propiciado la consecución de una buena base teórica y práctica para la creación de sistemas de recomendación móviles proactivos basados en información contextual. ABSTRACT Recommender systems are powerful information filtering tools which offer users personalized suggestions about items whose aim is to satisfy their needs. Traditionally the information used to make recommendations has been based on users’ ratings or data on the item’s consumption history and transactions carried out in the system. However, due to the remarkable growth in mobile devices in our society, new opportunities have arisen to improve these systems by implementing them in ubiquitous environments which provide rich context-awareness information on their location or current activity. Because of this current all-mobile lifestyle, users are socially connected permanently, which allows their context to be enhanced not only with physical information, but also with a social dimension. As a result of these novel contextual data sources, the advent of mobile Context-Aware Recommender Systems (CARS) as a research area has appeared to improve the level of personalization in recommendation. On the other hand, this new scenario in which users have their mobile devices with them all the time offers the possibility of looking into new ways of making recommendations. Evolving the traditional user request-response pattern to a proactive approach is now possible as a result of this rich contextual scenario. Thus, the key idea is that recommendations are made to the user when the current situation is appropriate, attending to the available contextual information without an explicit user request being necessary. This dissertation proposes a set of models, algorithms and methods to incorporate proactivity into mobile CARS, while the impact of proactivity is studied in terms of user experience to extract significant outcomes as to "what", "when" and "how" proactive recommendations have to be notified to users. To this end, the development of this dissertation starts from the proposal of a general architecture for building mobile CARS in scenarios with rich social data along with a new way of managing a recommendation process through a REST interface to make this architecture multi-device and cross-platform compatible. Details as regards its implementation and evaluation in a Spanish banking scenario are provided to validate its usefulness and user acceptance. After that, a novel model is presented for proactivity in mobile CARS which shows the key ideas related to decide when a situation warrants a proactive recommendation by establishing algorithms that represent the relationship between the appropriateness of a situation and the suitability of the candidate items to be recommended. A validation of these ideas in the area of e-learning authoring tools is also presented. Following the previous model, this dissertation presents the design and implementation of new mobile user interfaces for proactive notifications. The results of an evaluation among users testing these novel interfaces is also shown to study the impact of proactivity in the user experience of mobile CARS, while significant factors associated to proactivity are also identified. The last stage of this dissertation merges the previous outcomes to design a new methodology to calculate the appropriateness of a situation so as to incorporate proactivity into mobile CARS. Additionally, this work provides details about its validation in a European e-learning social network in which the whole architecture and proactive recommendation model together with its methods have been implemented. Finally, this dissertation opens up a discussion about the conclusions obtained throughout this research, resulting in useful information from the different design and implementation stages of proactive mobile CARS.
Resumo:
This paper proposes a low cost and complexity indoor location and navigation system using visible light communications and a mobile device. LED lamps work as beacons transmitting an identifier code so a mobile device can know its location. Experimental designs for transmitter and receiver interfaces are presented and potential applications are discussed.
Resumo:
This paper presents a communication interface between supervisory low-cost mobile robots and domestic Wireless Sensor Network (WSN) based on the Zig Bee protocol from different manufacturers. The communication interface allows control and communication with other network devices using the same protocol. The robot can receive information from sensor devices (temperature, humidity, luminosity) and send commands to actuator devices (lights, shutters, thermostats) from different manufacturers. The architecture of the system, the interfaces and devices needed to establish the communication are described in the paper.
Resumo:
Usability guidelines are a useful tool for the developers to improve interaction with systems. It includes knowledge of different disciplines related to usability and provides solutions and best practices to achieve the objectives of usability. Heuristic evaluation is one of the methods most widely used to evaluate and user interfaces. The objective of this study is to enrich the process of heuristic evaluation with the design guidelines focusing it on the evaluation of applications for mobile devices. As well as generate a homogeneous classification of guidelines content, in order to help that from design and development process, be included solutions and good practices provided by the guidelines. In order to achieve the objectives of this work, it is provides a method for generating heuristics for mobile applications, with which four applications were evaluated, and a web tool has also been developed that allows access to the content of the guidelines using the homogeneous classification of guidelines content. The results showed the ease and utility of performing heuristic evaluations using a set of heuristics focused on mobile applications.