3 resultados para Mixed methodology

em Universidad Politécnica de Madrid


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent research has shown large differences between the expected and the actual energy consumption in buildings. The differences have been attributed partially, to the assumptions made during the design phase of buildings when simulation methods are employed. More accurate occupancy profiles on building operation could help to carry out more precise building performance calculations. This study focuses on the post-occupancy evaluation of two apartments, one renovated and one non renovated, in Madrid within the same building complex. The aim of this paper is to present an application of the mixed-methods methodology (Creswell, 2007) to assess thermal comfort and occupancy practices used in the case studies, and to discuss the shortcomings and opportunities associated with it. The mixed-methods methodology offers strategies for integrating qualitative and quantitative methods to investigate complex phenomena. This approach is expected to contribute to the growing knowledge of occupants’ behaviour and building performance by explaining the differences observed between energy consumption and thermal comfort in relation to people’s saving and comfort practices and the related experiences, preferences and values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern embedded applications typically integrate a multitude of functionalities with potentially different criticality levels into a single system. Without appropriate preconditions, the integration of mixed-criticality subsystems can lead to a significant and potentially unacceptable increase of engineering and certification costs. A promising solution is to incorporate mechanisms that establish multiple partitions with strict temporal and spatial separation between the individual partitions. In this approach, subsystems with different levels of criticality can be placed in different partitions and can be verified and validated in isolation. The MultiPARTES FP7 project aims at supporting mixed- criticality integration for embedded systems based on virtualization techniques for heterogeneous multicore processors. A major outcome of the project is the MultiPARTES XtratuM, an open source hypervisor designed as a generic virtualization layer for heterogeneous multicore. MultiPARTES evaluates the developed technology through selected use cases from the offshore wind power, space, visual surveillance, and automotive domains. The impact of MultiPARTES on the targeted domains will be also discussed. In a number of ongoing research initiatives (e.g., RECOMP, ARAMIS, MultiPARTES, CERTAINTY) mixed-criticality integration is considered in multicore processors. Key challenges are the combination of software virtualization and hardware segregation and the extension of partitioning mechanisms to jointly address significant non-functional requirements (e.g., time, energy and power budgets, adaptivity, reliability, safety, security, volume, weight, etc.) along with development and certification methodology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Short-run forecasting of electricity prices has become necessary for power generation unit schedule, since it is the basis of every profit maximization strategy. In this article a new and very easy method to compute accurate forecasts for electricity prices using mixed models is proposed. The main idea is to develop an efficient tool for one-step-ahead forecasting in the future, combining several prediction methods for which forecasting performance has been checked and compared for a span of several years. Also as a novelty, the 24 hourly time series has been modelled separately, instead of the complete time series of the prices. This allows one to take advantage of the homogeneity of these 24 time series. The purpose of this paper is to select the model that leads to smaller prediction errors and to obtain the appropriate length of time to use for forecasting. These results have been obtained by means of a computational experiment. A mixed model which combines the advantages of the two new models discussed is proposed. Some numerical results for the Spanish market are shown, but this new methodology can be applied to other electricity markets as well