8 resultados para Microstructural analysis

em Universidad Politécnica de Madrid


Relevância:

70.00% 70.00%

Publicador:

Resumo:

En este proyecto se ha desarrollado un código de MATLAB para el procesamiento de imágenes tomográficas 3D, de muestras de asfalto de carreteras en Polonia. Estas imágenes en 3D han sido tomadas por un equipo de investigación de la Universidad Tecnológica de Lodz (LUT). El objetivo de este proyecto es crear una herramienta que se pueda utilizar para estudiar las diferentes muestras de asfalto 3D y pueda servir para estudiar las pruebas de estrés que experimentan las muestras en el laboratorio. Con el objetivo final de encontrar soluciones a la degradación sufrida en las carreteras de Polonia, debido a diferentes causas, como son las condiciones meteorológicas. La degradación de las carreteras es un tema que se ha investigado desde hace muchos años, debido a la fuerte degradación causada por diferentes factores como son climáticos, la falta de mantenimiento o el tráfico excesivo en algunos casos. Es en Polonia, donde estos tres factores hacen que la composición de muchas carreteras se degrade rápidamente, sobre todo debido a las condiciones meteorológicas sufridas a lo largo del año, con temperaturas que van desde 30° C en verano a -20° C en invierno. Esto hace que la composición de las carreteras sufra mucho y el asfalto se levante, lo que aumenta los costos de mantenimiento y los accidentes de carretera. Este proyecto parte de la base de investigación que se lleva a cabo en la LUT, tratando de mejorar el análisis de las muestras de asfalto, por lo que se realizarán las pruebas de estrés y encontrar soluciones para mejorar el asfalto en las carreteras polacas. Esto disminuiría notablemente el costo de mantenimiento. A pesar de no entrar en aspectos muy técnicos sobre el asfalto y su composición, se ha necesitado realizar un estudio profundo sobre todas sus características, para crear un código capaz de obtener los mejores resultados. Por estas razones, se ha desarrollado en Matlab, los algoritmos que permiten el estudio de los especímenes 3D de asfalto. Se ha utilizado este software, ya que Matlab es una poderosa herramienta matemática que permite operar con matrices para realización de operaciones rápidamente, permitiendo desarrollar un código específico para el tratamiento y procesamiento de imágenes en 3D. Gracias a esta herramienta, estos algoritmos realizan procesos tales como, la segmentación de la imagen 3D, pre y post procesamiento de la imagen, filtrado o todo tipo de análisis microestructural de las muestras de asfalto que se están estudiando. El código presentado para la segmentación de las muestras de asfalto 3D es menos complejo en su diseño y desarrollo, debido a las herramientas de procesamiento de imágenes que incluye Matlab, que facilitan significativamente la tarea de programación, así como el método de segmentación utilizado. Respecto al código, este ha sido diseñado teniendo en cuenta el objetivo de facilitar el trabajo de análisis y estudio de las imágenes en 3D de las muestras de asfalto. Por lo tanto, el principal objetivo es el de crear una herramienta para el estudio de este código, por ello fue desarrollado para que pueda ser integrado en un entorno visual, de manera que sea más fácil y simple su utilización. Ese es el motivo por el cual todos estos algoritmos y funciones, que ha sido desarrolladas, se integrarán en una herramienta visual que se ha desarrollado con el GUIDE de Matlab. Esta herramienta ha sido creada en colaboración con Jorge Vega, y fue desarrollada en su proyecto final de carrera, cuyo título es: Segmentación microestructural de Imágenes en 3D de la muestra de asfalto utilizando Matlab. En esta herramienta se ha utilizado todo las funciones programadas en este proyecto, y tiene el objetivo de desarrollar una herramienta que permita crear un entorno gráfico intuitivo y de fácil uso para el estudio de las muestras de 3D de asfalto. Este proyecto se ha dividido en 4 capítulos, en un primer lugar estará la introducción, donde se presentarán los aspectos más importante que se va a componer el proyecto. En el segundo capítulo se presentarán todos los datos técnicos que se han tenido que estudiar para desarrollar la herramienta, entre los que cabe los tres temas más importantes que se han estudiado en este proyecto: materiales asfálticos, los principios de la tomografías 3D y el procesamiento de imágenes. Esta será la base para el tercer capítulo, que expondrá la metodología utilizada en la elaboración del código, con la explicación del entorno de trabajo utilizado en Matlab y todas las funciones de procesamiento de imágenes utilizadas. Además, se muestra todo el código desarrollado, así como una descripción teórica de los métodos utilizados para el pre-procesamiento y segmentación de las imagenes en 3D. En el capítulo 4, se mostrarán los resultados obtenidos en el estudio de una de las muestras de asfalto, y, finalmente, el último capítulo se basa en las conclusiones sobre el desarrollo de este proyecto. En este proyecto se ha llevado han realizado todos los puntos que se establecieron como punto de partida en el anteproyecto para crear la herramienta, a pesar de que se ha dejado para futuros proyectos nuevas posibilidades de este codigo, como por ejemplo, la detección automática de las diferentes regiones de una muestra de asfalto debido a su composición. Como se muestra en este proyecto, las técnicas de procesamiento de imágenes se utilizan cada vez más en multitud áreas, como pueden ser industriales o médicas. En consecuencia, este tipo de proyecto tiene multitud de posibilidades, y pudiendo ser la base para muchas nuevas aplicaciones que se puedan desarrollar en un futuro. Por último, se concluye que este proyecto ha contribuido a fortalecer las habilidades de programación, ampliando el conocimiento de Matlab y de la teoría de procesamiento de imágenes. Del mismo modo, este trabajo proporciona una base para el desarrollo de un proyecto más amplio cuyo alcance será una herramienta que puedas ser utilizada por el equipo de investigación de la Universidad Tecnológica de Lodz y en futuros proyectos. ABSTRACT In this project has been developed one code in MATLAB to process X-ray tomographic 3D images of asphalt specimens. These images 3D has been taken by a research team of the Lodz University of Technology (LUT). The aim of this project is to create a tool that can be used to study differents asphalt specimen and can be used to study them after stress tests undergoing the samples. With the final goal to find solutions to the degradation suffered roads in Poland due to differents causes, like weather conditions. The degradation of the roads is an issue that has been investigated many years ago, due to strong degradation suffered caused by various factors such as climate, poor maintenance or excessive traffic in some cases. It is in Poland where these three factors make the composition of many roads degrade rapidly, especially due to the weather conditions suffered along the year, with temperatures ranging from 30 o C in summer to -20 ° C in winter. This causes the roads suffers a lot and asphalt rises shortly after putting, increasing maintenance costs and road accident. This project part of the base that research is taking place at the LUT, in order to better analyze the asphalt specimens, they are tested for stress and find solutions to improve the asphalt on Polish roads. This would decrease remarkable maintenance cost. Although this project will not go into the technical aspect as asphalt and composition, but it has been required a deep study about all of its features, to create a code able to obtain the best results. For these reasons, there have been developed in Matlab, algorithms that allow the study of 3D specimens of asphalt. Matlab is a powerful mathematical tool, which allows arrays operate fastly, allowing to develop specific code for the treatment and processing of 3D images. Thus, these algorithms perform processes such as the multidimensional matrix sgementation, pre and post processing with the same filtering algorithms or microstructural analysis of asphalt specimen which being studied. All these algorithms and function that has been developed to be integrated into a visual tool which it be developed with the GUIDE of Matlab. This tool has been created in the project of Jorge Vega which name is: Microstructural segmentation of 3D images of asphalt specimen using Matlab engine. In this tool it has been used all the functions programmed in this project, and it has the aim to develop an easy and intuitive graphical environment for the study of 3D samples of asphalt. This project has been divided into 4 chapters plus the introduction, the second chapter introduces the state-of-the-art of the three of the most important topics that have been studied in this project: asphalt materials, principle of X-ray tomography and image processing. This will be the base for the third chapter, which will outline the methodology used in developing the code, explaining the working environment of Matlab and all the functions of processing images used. In addition, it will be shown all the developed code created, as well as a theoretical description of the methods used for preprocessing and 3D image segmentation. In Chapter 4 is shown the results obtained from the study of one of the specimens of asphalt, and finally the last chapter draws the conclusions regarding the development of this project.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on laser beam intensities above 109 W/cm2 with pulse energy of several Joules and duration of nanoseconds, Laser Shock Processing (LSP) is capable of inducing a surface compressive residual stress field. The paper presents experimental results showing the ability of LSP to improve the mechanical strength and cracking resistance of AA2024-T351 friction stir welded (FSW) joints. After introducing the FSW and LSP procedures, the results of microstructural analysis and micro-hardness are discussed. Video Image Correlation was used to measure the displacement and strain fields produced during tensile testing of flat specimens; the local and overall tensile behavior of native FSW joints vs. LSP treated were analyzed. Further, results of slow strain rate tensile testing of the FSW joints, native and LSP treated, performed in 3.5% NaCl solution are presented. The ability of LSP to improve the structural behavior of the FSW joints is underscored.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La presente memoria de tesis tiene como objetivo principal la caracterización mecánica en función de la temperatura de nueve aleaciones de wolframio con contenidos diferentes en titanio, vanadio, itria y lantana. Las aleaciones estudiadas son las siguientes: W-0.5%Y2O3, W-2%Ti, W-2% Ti-0.5% Y2O3, W-4% Ti-0.5% Y2O3, W-2%V, W- 2%Vmix, W-4%V, W-1%La2O3 and W-4%V-1%La2O3. Todos ellos, además del wolframio puro se fabrican mediante compresión isostática en caliente (HIP) y son suministradas por la Universidad Carlos III de Madrid. La investigación se desarrolla a través de un estudio sistemático basado en ensayos físicos y mecánicos, así como el análisis post mortem de las muestras ensayadas. Para realizar dicha caracterización mecánica se aplican diferentes ensayos mecánicos, la mayoría de ellos realizados en el intervalo de temperatura de 25 a 1000 º C. Los ensayos de caracterización que se llevan a cabo son: • Densidad • Dureza Vicker • Módulo de elasticidad y su evolución con la temperatura • Límite elástico o resistencia a la flexión máxima, y su evolución con la temperatura • Resistencia a la fractura y su comportamiento con la temperatura. • Análisis microestructural • Análisis fractográfico • Análisis de la relación microestructura-comportamiento macroscópico. El estudio comienza con una introducción acerca de los sistemas en los que estos materiales son candidatos para su aplicación, para comprender las condiciones a las que los materiales serán expuestos. En este caso, el componente que determina las condiciones es el Divertor del reactor de energía de fusión por confinamiento magnético. Parece obvio que su uso en los componentes del reactor de fusión, más exactamente como materiales de cara al plasma (Plasma Facing Components o PFC), hace que estas aleaciones trabajen bajo condiciones de irradiación de neutrones. Además, el hecho de que sean materiales nuevos hace necesario un estudio previo de las características básicas que garantice los requisitos mínimos antes de realizar un estudio más complejo. Esto constituye la principal motivación de la presente investigación. La actual crisis energética ha llevado a aunar esfuerzos en el desarrollo de nuevos materiales, técnicas y dispositivos para la aplicación en la industria de la energía nuclear. El desarrollo de las técnicas de producción de aleaciones de wolframio, con un punto de fusión muy alto, requiere el uso de precursores de sinterizado para lograr densificaciones más altas y por lo tanto mejores propiedades mecánicas. Este es el propósito de la adición de titanio y vanadio en estas aleaciones. Sin embargo, uno de los principales problemas de la utilización de wolframio como material estructural es su alta temperatura de transición dúctil-frágil. Esta temperatura es característica de materiales metálicos con estructura cúbica centrada en el cuerpo y depende de varios factores metalúrgicos. El proceso de recristalización aumenta esta temperatura de transición. Los PFC tienen temperaturas muy altas de servicio, lo que facilita la recristalización del metal. Con el fin de retrasar este proceso, se dispersan partículas insolubles en el material permitiendo temperaturas de servicio más altas. Hasta ahora se ha utilizado óxidos de torio, lantano e itrio como partículas dispersas. Para entender cómo los contenidos en algunos elementos y partículas de óxido afectan a las propiedades de wolframio se estudian las aleaciones binarias de wolframio en comparación con el wolframio puro. A su vez estas aleaciones binarias se utilizan como material de referencia para entender el comportamiento de las aleaciones ternarias. Dada la estrecha relación entre las propiedades del material, la estructura y proceso de fabricación, el estudio se completa con un análisis fractográfico y micrográfico. El análisis fractográfico puede mostrar los mecanismos que están implicados en el proceso de fractura del material. Por otro lado, el estudio micrográfico ayudará a entender este comportamiento a través de la identificación de las posibles fases presentes. La medida del tamaño de grano es una parte de la caracterización microestructural. En esta investigación, la medida del tamaño de grano se llevó a cabo por ataque químico selectivo para revelar el límite de grano en las muestras preparadas. Posteriormente las micrografías fueron sometidas a tratamiento y análisis de imágenes. El documento termina con una discusión de los resultados y la compilación de las conclusiones más importantes que se alcanzan después del estudio. Actualmente, el desarrollo de nuevos materiales para aplicación en los componentes de cara al plasma continúa. El estudio de estos materiales ayudará a completar una base de datos de características que permita hacer una selección de ellos más fiable. The main goal of this dissertation is the mechanical characterization as a function of temperature of nine tungsten alloys containing different amounts of titanium, vanadium and yttrium and lanthanum oxide. The alloys under study were the following ones: W-0.5%Y2O3, W-2%Ti, W-2% Ti-0.5% Y2O3, W-4% Ti-0.5% Y2O3, W-2%V, W- 2%Vmix, W-4%V, W-1%La2O3 and W-4%V-1%La2O3. All of them, besides pure tungsten, were manufactured using a Hot Isostatic Pressing (HIP) process and they were supplied by the Universidad Carlos III de Madrid. The research was carried out through a systematic study based on physical and mechanical tests as well as the post mortem analysis of tested samples. Diverse mechanical tests were applied to perform this characterization; most of them were conducted at temperatures in the range 25-1000 ºC. The following characterization tests were performed: • Density • Vickers hardness • Elastic modulus • Yield strength or ultimate bending strength, and their evolution with temperature • Fracture toughness and its temperature behavior • Microstructural analysis • Fractographical analysis • Microstructure-macroscopic relationship analysis This study begins with an introduction regarding the systems where these materials could be applied, in order to establish and understand their service conditions. In this case, the component that defines the conditions is the Divertor of magnetic-confinement fusion reactors. It seems obvious that their use as fusion reactor components, more exactly as plasma facing components (PFCs), makes these alloys work under conditions of neutron irradiation. In addition to this, the fact that they are novel materials demands a preliminary study of the basic characteristics which will guarantee their minimum requirements prior to a more complex study. This constitutes the motivation of the present research. The current energy crisis has driven to join forces so as to develop new materials, techniques and devices for their application in the nuclear energy industry. The development of production techniques for tungsten-based alloys, with a very high melting point, requires the use of precursors for sintering to achieve higher densifications and, accordingly, better mechanical properties. This is the purpose of the addition of titanium and vanadium to these alloys. Nevertheless, one of the main problems of using tungsten as structural material is its high ductile-brittle transition temperature. This temperature is characteristic of metallic materials with body centered cubic structure and depends on several metallurgical factors. The recrystallization process increases their transition temperature. Since PFCs have a very high service temperature, this facilitates the metal recrystallization. In order to inhibit this process, insoluble particles are dispersed in the material allowing higher service temperatures. So far, oxides of thorium, lanthanum and yttrium have been used as dispersed particles. Tungsten binary alloys are studied in comparison with pure tungsten to understand how the contents of some elements and oxide particles affect tungsten properties. In turn, these binary alloys are used as reference materials to understand the behavior of ternary alloys. Given the close relationship between the material properties, structure and manufacturing process, this research is completed with a fractographical and micrographic analysis. The fractographical analysis is aimed to show the mechanisms that are involved in the process of the material fracture. Besides, the micrographic study will help to understand this behavior through the identification of present phases. The grain size measurement is a crucial part of the microstructural characterization. In this work, the measurement of grain size was carried out by chemical selective etching to reveal the boundary grain on prepared samples. Afterwards, micrographs were subjected to both treatment and image analysis. The dissertation ends with a discussion of results and the compilation of the most important conclusions reached through this work. The development of new materials for plasma facing components application is still under study. The analysis of these materials will help to complete a database of the features that will allow a more reliable materials selection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Se ha estudiado el acero inoxidable pulvimetalúrgico AISI 430L, comparando la sinterización en dos atmósferas diferentes; en vacío, y en una atmósfera que contiene nitrógeno. Se ha desarrollado un tratamiento térmico con objeto de incrementar las propiedades mecánicas, mediante la modificación microestructural de los nitruros complejos de hierro y cromo precipitados durante la etapa de sinterización. Se han evaluado las propiedades físicas y a la vez se ha realizado un análisis microestructural con el fin de relacionar la microestructura con el incremento en las propiedades mecánicas. Influence of sintering atmosphere on the mechanical properties of steel P / M AISI 430L. It has studied the stainless steel powder metallurgy AISI 430L. It has compared the sintering in two different atmospheres; in vacuum, and in an atmosphere containing nitrogen. It has developed a heat treatment with the aim of improving the mechanical properties. This has been done through microstructural modification of complex nitrides of iron and chromium precipitates during the phase of sintering. Physical properties have been evaluated and are been performing a microstructural analysis for microstructure related to the increase in mechanical properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eutectic rods of Al2O3–Er3Al5O12 were grown by directional solidification using the laser-heated floating zone method at rates in the range 25–1500 mm/h. Their microstructure and mechanical properties (hardness, toughness and strength) were investigated as a function of the growth rate. A homogeneous and interpenetrated microstructure was found in most cases, and interphase spacing decreased with growth rate following the Hunt–Jackson law. Hardness increased slightly as the interphase spacing decreased while toughness was low and independent of the microstructure. The rods presented very high bending strength as a result of the homogeneous microstructure, and their strength increased rapidly as the interphase spacing decreased, reaching a maximum of 2.7 GPa for the rods grown at 750 mm/h. The bending strength remained constant up to 1300 K and decreased above this temperature. The relationship between the microstructure and the mechanical properties was established from the analysis of the microstructure and of the fracture mechanisms

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated the effect of adding soy protein isolate (SPI) and long-chain perception, trained and untrained panel inulin (INL) blends with 10 different SPI : INL ratios on the textural, rheological and 17 microstructural properties of freshly made and frozen/thawed potato puree. All the potato puree samples were subjected to a sensory texture pro?le analysis and a 21 trained panel rated the intensity of six descriptors, while an untrained panel did the same on six selected frozen/thawed products. The main SPI : INL ratio effect remained signi?cant for all the descriptors evaluated, when the analysis of variance was applied considering the untrained assessors as random effects. However, only trained panel scores for creaminess corresponded well with untrained assessor. Rheological ?ow index values were linked with variations in perceived consistency, and geometric and surface textural attributes were explained by structural features such as the presence of INL crystallites and SPI coarse strands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El wolframio (W) y sus aleaciones se consideran los mejores candidatos para la construcción del divertor en la nueva generación de reactores de fusión nuclear. Este componente va a recibir las cargas térmicas más elevadas durante el funcionamiento del reactor ya que estará en contacto directo con el plasma. En los últimos años, después de un profundo análisis y siguiendo una estrategia de reducción de costes, la Organización de ITER tomó la decisión de construir el divertor integramente de wolframio desde el principio. Por ello, el wolframio no sólo actuará como material en contacto con el plasma (PFM), sino que también tendría aplicaciones estructurales. El wolframio, debido a sus excelentes propiedades termo-físicas, cumple todos los requerimientos para ser utilizado como PFM, sin embargo, su inherente fragilidad pone en peligro su uso estructural. Por tanto, uno de los principales objetivos de esta tesis es encontrar una aleación de wolframio con menor fragilidad. Durante éste trabajo, se realizó la caracterización microstructural y mecánica de diferentes materiales basados en wolframio. Sin embargo, ésta tarea es un reto debido a la pequeña cantidad de material suministrado, su reducido tamaño de grano y fragilidad. Por ello, para una correcta medida de todas las propiedades físicas y mecánicas se utilizaron diversas técnicas experimentales. Algunas de ellas se emplean habitualmente como la nanoindentación o los ensayos de flexión en tres puntos (TPB). Sin embargo, otras fueron especificamente desarrolladas e implementadas durante el desarrollo de esta tesis como es el caso de la medida real de la tenacidad de fractura en los materiales masivos, o de las medidas in situ de la tenacidad de fractura en las láminas delgadas de wolframio. Diversas composiciones de aleaciones de wolframio masivas (W-1% Y2O3, W-2% V-0.5% Y2O3, W-4% V-0.5% Y2O3, W-2% Ti-1% La2O3 y W-4% Ti-1% La2O3) se han estudiado y comparado con un wolframio puro producido en las mismas condiciones. Estas aleaciones, producidas por ruta pulvimetalúrgica de aleado mecánico (MA) y compactación isostática en caliente (HIP), fueron microstructural y mecánicamente caracterizadas desde 77 hasta 1473 K en aire y en alto vacío. Entre otras propiedades físicas y mecánicas se midieron la dureza, el módulo elástico, la resistencia a flexión y la tenacidad de fractura para todas las aleaciones. Finalmente se analizaron las superficies de fractura después de los ensayos de TPB para relacionar los micromecanismos de fallo con el comportamiento macroscópico a rotura. Los resultados obtenidos mostraron un comportamiento mecánico frágil en casi todo el intervalo de temperaturas y para casi todas las aleaciones sin mejoría de la temperatura de transición dúctil-frágil (DBTT). Con el fin de encontrar un material base wolframio con una DBTT más baja se realizó también un estudio, aún preliminar, de láminas delgadas de wolframio puro y wolframio dopado con 0.005wt.% potasio (K). Éstas láminas fueron fabricadas industrialmente mediante sinterizado y laminación en caliente y en frío y se sometieron posteriormente a un tratamiento térmico de recocido desde 1073 hasta 2673 K. Se ha analizado la evolución de su microestructura y las propiedades mecánicas al aumentar la temperatura de recocido. Los resultados mostraron la estabilización de los granos de wolframio con el incremento de la temperatura de recocido en las láminas delgadas de wolframio dopado con potasio. Sin embargo, es necesario realizar estudios adicionales para entender mejor la microstructura y algunas propiedades mecánicas de estos materiales, como la tenacidad de fractura. Tungsten (W) and tungsten-based alloys are considered to be the best candidate materials for fabricating the divertor in the next-generation nuclear fusion reactors. This component will experience the highest thermal loads during the operation of a reactor since it directly faces the plasma. In recent years, after thorough analysis that followed a strategy of cost reduction, the ITER Organization decided to built a full-tunsgten divertor before the first nuclear campaigns. Therefore, tungsten will be used not only as a plasma-facing material (PFM) but also in structural applications. Tungsten, due to its the excellent thermo-physical properties fulfils the requirements of a PFM, however, its use in structural applications is compromised due to its inherent brittleness. One of the objectives of this phD thesis is therefore, to find a material with improved brittleness behaviour. The microstructural and mechanical characterisation of different tunsgten-based materials was performed. However, this is a challenging task because of the reduced laboratory-scale size of the specimens provided, their _ne microstructure and their brittleness. Consequently, many techniques are required to ensure an accurate measurement of all the mechanical and physical properties. Some of the applied methods have been widely used such as nanoindentation or three-point bending (TPB) tests. However, other methods were specifically developed and implemented during this work such as the measurement of the real fracture toughness of bulk-tunsgten alloys or the in situ fracture toughness measurements of very thin tungsten foils. Bulk-tunsgten materials with different compositions (W-1% Y2O3, W-2% V- 0.5% Y2O3, W-4% V-0.5% Y2O3, W-2% Ti-1% La2O3 and W-4% Ti-1% La2O3) were studied and compared with pure tungsten processed under the same conditions. These alloys, produced by a powder metallurgical route of mechanical alloying (MA) and hot isostatic pressing (HIP), were microstructural and mechanically characterised from 77 to 1473 K in air and under high vacuum conditions. Hardness, elastic modulus, flexural strength and fracture toughness for all of the alloys were measured in addition to other physical and mechanical properties. Finally, the fracture surfaces after the TPB tests were analysed to correlate the micromechanisms of failure with the macroscopic behaviour. The results reveal brittle mechanical behaviour in almost the entire temperature range for the alloys and micromechanisms of failure with no improvement in the ductile-brittle transition temperature (DBTT). To continue the search of a tungsten material with lowered DBTT, a preliminary study of pure tunsgten and 0.005 wt.% potassium (K)-doped tungsten foils was also performed. These foils were industrially produced by sintering and hot and cold rolling. After that, they were annealed from 1073 to 2673 K to analyse the evolution of the microstructural and mechanical properties with increasing annealing temperature. The results revealed the stabilisation of the tungsten grains with increasing annealing temperature in the potassium-doped tungsten foil. However, additional studies need to be performed to gain a better understanding of the microstructure and mechanical properties of these materials such as fracture toughness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Los fieltros son una familia de materiales textiles constituidos por una red desordenada de fibras conectadas por medio de enlaces térmicos, químicos o mecánicos. Presentan menor rigidez y resistencia (al igual que un menor coste de procesado) que sus homólogos tejidos, pero mayor deformabilidad y capacidad de absorción de energía. Los fieltros se emplean en diversas aplicaciones en ingeniería tales como aislamiento térmico, geotextiles, láminas ignífugas, filtración y absorción de agua, impacto balístico, etc. En particular, los fieltros punzonados fabricados con fibras de alta resistencia presentan una excelente resistencia frente a impacto balístico, ofreciendo las mismas prestaciones que los materiales tejidos con un tercio de la densidad areal. Sin embargo, se sabe muy poco acerca de los mecanismos de deformación y fallo a nivel microscópico, ni sobre como influyen en las propiedades mecánicas del material. Esta carencia de conocimiento dificulta la optimización del comportamiento mecánico de estos materiales y también limita el desarrollo de modelos constitutivos basados en mecanismos físicos, que puedan ser útiles en el diseño de componentes estructurales. En esta tesis doctoral se ha llevado a cabo un estudio minucioso con el fin de determinar los mecanismos de deformación y las propiedades mecánicas de fieltros punzonados fabricados con fibras de polietileno de ultra alto peso molecular. Los procesos de deformación y disipación de energía se han caracterizado en detalle por medio de una combinación de técnicas experimentales (ensayos mecánicos macroscópicos a velocidades de deformación cuasi-estáticas y dinámicas, impacto balístico, ensayos de extracción de una o múltiples fibras, microscopía óptica, tomografía computarizada de rayos X y difracción de rayos X de gran ángulo) que proporcionan información de los mecanismos dominantes a distintas escalas. Los ensayos mecánicos macroscópicos muestran que el fieltro presenta una resistencia y ductilidad excepcionales. El estado inicial de las fibras es curvado, y la carga se transmite por el fieltro a través de una red aleatoria e isótropa de nudos creada por el proceso de punzonamiento, resultando en la formación de una red activa de fibra. La rotación y el estirado de las fibras activas es seguido por el deslizamiento y extracción de la fibra de los puntos de anclaje mecánico. La mayor parte de la resistencia y la energía disipada es proporcionada por la extracción de las fibras activas de los nudos, y la fractura final tiene lugar como consecuencia del desenredo total de la red en una sección dada donde la deformación macroscópica se localiza. No obstante, aunque la distribución inicial de la orientación de las fibras es isótropa, las propiedades mecánicas resultantes (en términos de rigidez, resistencia y energía absorbida) son muy anisótropas. Los ensayos de extracción de múltiples fibras en diferentes orientaciones muestran que la estructura de los nudos conecta más fibras en la dirección transversal en comparación con la dirección de la máquina. La mejor interconectividad de las fibras a lo largo de la dirección transversal da lugar a una esqueleto activo de fibras más denso, mejorando las propiedades mecánicas. En términos de afinidad, los fieltros deformados a lo largo de la dirección transversal exhiben deformación afín (la deformación macroscópica transfiere directamente a las fibras por el material circundante), mientras que el fieltro deformado a lo largo de la dirección de la máquina presenta deformación no afín, y la mayor parte de la deformación macroscópica no es transmitida a las fibras. A partir de estas observaciones experimentales, se ha desarrollado un modelo constitutivo para fieltros punzonados confinados por enlaces mecánicos. El modelo considera los efectos de la deformación no afín, la conectividad anisótropa inducida durante el punzonamiento, la curvatura y re-orientación de la fibra, así como el desenredo y extracción de la fibra de los nudos. El modelo proporciona la respuesta de un mesodominio del material correspondiente al volumen asociado a un elemento finito, y se divide en dos bloques. El primer bloque representa el comportamiento de la red y establece la relación entre el gradiente de deformación macroscópico y la respuesta microscópica, obtenido a partir de la integración de la respuesta de las fibras en el mesodominio. El segundo bloque describe el comportamiento de la fibra, teniendo en cuenta las características de la deformación de cada familia de fibras en el mesodominio, incluyendo deformación no afín, estiramiento, deslizamiento y extracción. En la medida de lo posible, se ha asignado un significado físico claro a los parámetros del modelo, por lo que se pueden identificar por medio de ensayos independientes. Las simulaciones numéricas basadas en el modelo se adecúan a los resultados experimentales de ensayos cuasi-estáticos y balísticos desde el punto de vista de la respuesta mecánica macroscópica y de los micromecanismos de deformación. Además, suministran información adicional sobre la influencia de las características microstructurales (orientación de la fibra, conectividad de la fibra anisótropa, afinidad, etc) en el comportamiento mecánico de los fieltros punzonados. Nonwoven fabrics are a class of textile material made up of a disordered fiber network linked by either thermal, chemical or mechanical bonds. They present lower stiffness and strength (as well as processing cost) than the woven counterparts but much higher deformability and energy absorption capability and are used in many different engineering applications (including thermal insulation, geotextiles, fireproof layers, filtration and water absorption, ballistic impact, etc). In particular, needle-punched nonwoven fabrics manufactured with high strength fibers present an excellent performance for ballistic protection, providing the same ballistic protection with one third of the areal weight as compared to dry woven fabrics. Nevertheless, very little is known about their deformation and fracture micromechanisms at the microscopic level and how they contribute to the macroscopic mechanical properties. This lack of knowledge hinders the optimization of their mechanical performance and also limits the development of physically-based models of the mechanical behavior that can be used in the design of structural components with these materials. In this thesis, a thorough study was carried out to ascertain the micromechanisms of deformation and the mechanical properties of a needle-punched nonwoven fabric made up by ultra high molecular weight polyethylene fibers. The deformation and energy dissipation processes were characterized in detail by a combination of experimental techniques (macroscopic mechanical tests at quasi-static and high strain rates, ballistic impact, single fiber and multi fiber pull-out tests, optical microscopy, X-ray computed tomography and wide angle X-ray diffraction) that provided information of the dominant mechanisms at different length scales. The macroscopic mechanical tests showed that the nonwoven fabric presented an outstanding strength and energy absorption capacity. It was found that fibers were initially curved and the load was transferred within the fabric through the random and isotropic network of knots created by needlepunching, leading to the formation of an active fiber network. Uncurling and stretching of the active fibers was followed by fiber sliding and pull-out from the entanglement points. Most of the strength and energy dissipation was provided by the extraction of the active fibers from the knots and final fracture occurred by the total disentanglement of the fiber network in a given section at which the macroscopic deformation was localized. However, although the initial fiber orientation distribution was isotropic, the mechanical properties (in terms of stiffness, strength and energy absorption) were highly anisotropic. Pull-out tests of multiple fibers at different orientations showed that structure of the knots connected more fibers in the transverse direction as compared with the machine direction. The better fiber interconnection along the transverse direction led to a denser active fiber skeleton, enhancing the mechanical response. In terms of affinity, fabrics deformed along the transverse direction essentially displayed affine deformation {i.e. the macroscopic strain was directly transferred to the fibers by the surrounding fabric, while fabrics deformed along the machine direction underwent non-affine deformation, and most of the macroscopic strain was not transferred to the fibers. Based on these experimental observations, a constitutive model for the mechanical behavior of the mechanically-entangled nonwoven fiber network was developed. The model accounted for the effects of non-affine deformation, anisotropic connectivity induced by the entanglement points, fiber uncurling and re-orientation as well as fiber disentanglement and pull-out from the knots. The model provided the constitutive response for a mesodomain of the fabric corresponding to the volume associated to a finite element and is divided in two blocks. The first one was the network model which established the relationship between the macroscopic deformation gradient and the microscopic response obtained by integrating the response of the fibers in the mesodomain. The second one was the fiber model, which took into account the deformation features of each set of fibers in the mesodomain, including non-affinity, uncurling, pull-out and disentanglement. As far as possible, a clear physical meaning is given to the model parameters, so they can be identified by means of independent tests. The numerical simulations based on the model were in very good agreement with the experimental results of in-plane and ballistic mechanical response of the fabrics in terms of the macroscopic mechanical response and of the micromechanisms of deformation. In addition, it provided additional information about the influence of the microstructural features (fiber orientation, anisotropic fiber connectivity, affinity) on the mechanical performance of mechanically-entangled nonwoven fabrics.