2 resultados para Microscopic simulation
em Universidad Politécnica de Madrid
Resumo:
Computational homogenization by means of the finite element analysis of a representative volume element of the microstructure is used to simulate the deformation of nanostructured Ti. The behavior of each grain is taken into account using a single crystal elasto-viscoplastic model which includes the microscopic mechanisms of plastic deformation by slip along basal, prismatic and pyramidal systems. Two different representations of the polycrystal were used. Each grain was modeled with one cubic finite element in the first one while many cubic elements were used to represent each grain in the second one, leading to a model which includes the effect of grain shape and size in a limited number of grains due to the computational cost. Both representations were used to simulate the tensile deformation of nanostructured Ti processed by ECAP-C as well as the drawing process of nanostructured Ti billets. It was found that the first representation based in one finite element per grain led to a stiffer response in tension and was not able to predict the texture evolution during drawing because the strain gradient within each grain could not be captured. On the contrary, the second representation of the polycrystal microstructure with many finite elements per grain was able to predict accurately the deformation of nanostructured Ti.
Resumo:
En esta tesis presentamos una teoría adaptada a la simulación de fenómenos lentos de transporte en sistemas atomísticos. En primer lugar, desarrollamos el marco teórico para modelizar colectividades estadísticas de equilibrio. A continuación, lo adaptamos para construir modelos de colectividades estadísticas fuera de equilibrio. Esta teoría reposa sobre los principios de la mecánica estadística, en particular el principio de máxima entropía de Jaynes, utilizado tanto para sistemas en equilibrio como fuera de equilibrio, y la teoría de las aproximaciones del campo medio. Expresamos matemáticamente el problema como un principio variacional en el que maximizamos una entropía libre, en lugar de una energía libre. La formulación propuesta permite definir equivalentes atomísticos de variables macroscópicas como la temperatura y la fracción molar. De esta forma podemos considerar campos macroscópicos no uniformes. Completamos el marco teórico con reglas de cuadratura de Monte Carlo, gracias a las cuales obtenemos modelos computables. A continuación, desarrollamos el conjunto completo de ecuaciones que gobiernan procesos de transporte. Deducimos la desigualdad de disipación entrópica a partir de fuerzas y flujos termodinámicos discretos. Esta desigualdad nos permite identificar la estructura que deben cumplir los potenciales cinéticos discretos. Dichos potenciales acoplan las tasas de variación en el tiempo de las variables microscópicas con las fuerzas correspondientes. Estos potenciales cinéticos deben ser completados con una relación fenomenológica, del tipo definido por la teoría de Onsanger. Por último, aportamos validaciones numéricas. Con ellas ilustramos la capacidad de la teoría presentada para simular propiedades de equilibrio y segregación superficial en aleaciones metálicas. Primero, simulamos propiedades termodinámicas de equilibrio en el sistema atomístico. A continuación evaluamos la habilidad del modelo para reproducir procesos de transporte en sistemas complejos que duran tiempos largos con respecto a los tiempos característicos a escala atómica. ABSTRACT In this work, we formulate a theory to address simulations of slow time transport effects in atomic systems. We first develop this theoretical framework in the context of equilibrium of atomic ensembles, based on statistical mechanics. We then adapt it to model ensembles away from equilibrium. The theory stands on Jaynes' maximum entropy principle, valid for the treatment of both, systems in equilibrium and away from equilibrium and on meanfield approximation theory. It is expressed in the entropy formulation as a variational principle. We interpret atomistic equivalents of macroscopic variables such as the temperature and the molar fractions, wich are not required to be uniform, but can vary from particle to particle. We complement this theory with Monte Carlo summation rules for further approximation. In addition, we provide a framework for studying transport processes with the full set of equations driving the evolution of the system. We first derive a dissipation inequality for the entropic production involving discrete thermodynamic forces and fluxes. This discrete dissipation inequality identifies the adequate structure for discrete kinetic potentials which couple the microscopic field rates to the corresponding driving forces. Those kinetic potentials must finally be expressed as a phenomenological rule of the Onsanger Type. We present several validation cases, illustrating equilibrium properties and surface segregation of metallic alloys. We first assess the ability of a simple meanfield model to reproduce thermodynamic equilibrium properties in systems with atomic resolution. Then, we evaluate the ability of the model to reproduce a long-term transport process in complex systems.