23 resultados para Microcantilever beams
em Universidad Politécnica de Madrid
Resumo:
The aim of this work is to simulate and optically characterize the piezoelectric performance of complementary metal oxide semiconductor (CMOS) compatible microcantilevers based on aluminium nitride (AlN) and manufactured at room temperature. This study should facilitate the integration of piezoelectric micro-electro-mechanical systems (MEMS) such as microcantilevers, in CMOS technology. Besides compatibility with standard integrated circuit manufacturing procedures, low temperature processing also translates into higher throughput and, as a consequence, lower manufacturing costs. Thus, the use of the piezoelectric properties of AlN manufactured by reactive sputtering at room temperature is an important step towards the integration of this type of devices within future CMOS technology standards. To assess the reliability of our fabrication process, we have manufactured arrays of free-standing microcantilever beams of variable dimension and studied their piezoelectric performance. The characterization of the first out-of-plane modes of AlN-actuated piezoelectric microcantilevers has been carried out using two optical techniques: laser Doppler vibrometry (LDV) and white light interferometry (WLI). In order to actuate the cantilevers, a periodic chirp signal in certain frequency ranges was applied between the device electrodes. The nature of the different vibration modes detected has been studied and compared with that obtained by a finite element model based simulation (COMSOL Multiphysics), showing flexural as well as torsional modes. The correspondence between theoretical and experimental data is reasonably good, probing the viability of this high throughput and CMOS compatible fabrication process. To complete the study, X-ray diffraction as well as d33 piezoelectric coefficient measurements were also carried out.
Resumo:
A finite element model was used to simulate timberbeams with defects and predict their maximum load in bending. Taking into account the elastoplastic constitutive law of timber, the prediction of fracture load gives information about the mechanisms of timber failure, particularly with regard to the influence of knots, and their local graindeviation, on the fracture. A finite element model was constructed using the ANSYS element Plane42 in a plane stress 2D-analysis, which equates thickness to the width of the section to create a mesh which is as uniform as possible. Three sub-models reproduced the bending test according to UNE EN 408: i) timber with holes caused by knots; ii) timber with adherent knots which have structural continuity with the rest of the beam material; iii) timber with knots but with only partial contact between knot and beam which was artificially simulated by means of contact springs between the two materials. The model was validated using ten 45 × 145 × 3000 mm beams of Pinus sylvestris L. which presented knots and graindeviation. The fracture stress data obtained was compared with the results of numerical simulations, resulting in an adjustment error less of than 9.7%
Resumo:
Illumination uniformity of a spherical capsule directly driven by laser beams has been assessed numerically. Laser facilities characterized by ND = 12, 20, 24, 32, 48 and 60 directions of irradiation with associated a single laser beam or a bundle of NB laser beams have been considered. The laser beam intensity profile is assumed super-Gaussian and the calculations take into account beam imperfections as power imbalance and pointing errors. The optimum laser intensity profile, which minimizes the root-mean-square deviation of the capsule illumination, depends on the values of the beam imperfections. Assuming that the NB beams are statistically independents is found that they provide a stochastic homogenization of the laser intensity associated to the whole bundle, reducing the errors associated to the whole bundle by the factor , which in turn improves the illumination uniformity of the capsule. Moreover, it is found that the uniformity of the irradiation is almost the same for all facilities and only depends on the total number of laser beams Ntot = ND × NB.
Resumo:
El principal objetivo de este estudio es evaluar la influencia de las fendas de secado en las propiedades mecánicas de vigas de madera. Para esto, se utilizan 40 vigas de Pino silvestre (Pinus sylvestris L) de 4200 mm de longitud y 150x200 mm de sección que fueron ensayadas según norma EN 408. Las fendas se registran detalladamente atendiendo a su longitud y posición en cada cara de la viga, y midiendo el espesor y la profundidad cada 100mm a lo largo de la viga. Solo el 10% de la muestra es rechazada por las fendas, según los criterios establecidos por la norma española de clasificación visual UNE 56544. Para evaluar la influencia de las fendas en las propiedades mecánicas, se usan tres parámetros globales basados en el área, el volumen o la profundad de la fenda, y dos locales basados en la profundidad máxima y la profundidad en la zona de rotura. Además se determina la densidad de las piezas. Estos parámetros se comparan con las propiedades mecánicas (tensión de rotura, módulo de elasticidad y energía de rotura) y se encuentra escasa relación entre ellos. Las mejores correlaciones se encuentran entre los parámetros relacionados con la profundidad de las fendas, tanto con el módulo de elasticidad como con la tensión de rotura. The aim of this study is the evaluation of the influence of drying fissures on the mechanical properties of timber beams. For that purpose, 40 sawn timber pieces of Scots pine (Pinus sylvestris L.) with 150x200 mm in cross-section and 4200 mm in length have been tested according to EN 408, obtaining MOR and MOE. The fissures were registered in detail measuring their length and position in each face of the beam, and the thickness and depth every 100 mm in length. Only 10 % of the pieces were rejected because fissures, according to UNE 56544 Spanish visual grading standard. To evaluate the influence of fissures in mechanical properties three global parameters: Fissures Area Ratio or ratio between the area occupied by fissures and the total area in the neutral axis plane of the beam; Fissures Volume Ratio or ratio between volume of fissures and the total volume of the beam; Fissures Average Depth and two local parameters were used: Fissures Maximum Depth in the beam, and Fissures Depth in the broken zone of the beam. Also the density of the beams was registered. These parameters were compared with mechanical properties (tensile strength, elasticity modulus, and rupture energy) and the relationship between them had not been founded. The best relationship was founded between the elasticity modulus y the tensile strength with the parameters which included the depth of the fissures.
Resumo:
This work presents a method for the analysis of timber composite beams which considers the slip in the connection system, based on assembling the flexibility matrix of the whole structure. This method is based on one proposed by Tommola and Jutila (2001). This paper extends the method to the case of a gap between two pieces with an arbitrary location at the first connector, which notably broadens its practical application. The addition of the gap makes it possible to model a cracked zone in concrete topping, as well as the case in which forming produces the gap. The consideration of induced stresses due to changes in temperature and moisture content is also described, while the concept of equivalent eccentricity is generalized. This method has important advantages in connection with the current European Standard EN 1995-1-1: 2004, as it is able to deal with any type of load, variable section, discrete and non-regular connection systems, a gap between the two pieces, and variations in temperature and moisture content. Although it could be applied to any structural system, it is specially suited for the case of simple supported and continuous beams. Working examples are presented at the end, showing that the arrangement of the connection notably modifies shear force distribution. A first interpretation of the results is made on the basis of the strut and tie theory. The examples prove that the use of EC-5 is unsafe when, as a rule of thumb, the strut or compression field between the support and the first connector is at an angle with the axis of the beam of less than 60º.
Resumo:
Laminated glass is a sandwich element consisting of two or more glass sheets, with one or more interlayers of polyvinyl butyral (PVB). The dynamic response of laminated glass beams and plates can be predicted using analytical or numerical models in which the glass and the PVB are usually modelled as linear-elastic and linear viscoelastic materials, respectively. In this work the dynamic behavior of laminated glass beams are predicted using a finite element model and the analytical model of Ross-Kerwin-Ungar. The numerical and analytical results are compared with those obtained by operational modal analysis performed at different temperatures.
Resumo:
The aim of this work is to optimize a Monte Carlo (MC) kernel for electron radiation therapy (IOERT) compatible with intraoperative usage and to integrate it within an existing IOERT dedicated treatment planning system (TPS)
Resumo:
A significant number of short-to-mid height RC buildings with wide beams have been constructed in areas of moderate seismicity of Spain, mainly for housing and administrative use. The buildings have a framed structure with one-way slabs; the wide beams constitute the distinctive characteristic, their depth being equal to that of the rest of the slab, thus providing a flat lower surface, convenient for construction and the layout of facilities. Seismic behavior in the direction of the wide beams appears to be deficient because of: (i) low lateral strength, mainly because of the small effective depth of the beams, (ii) inherent low ductility of the wide beams, generated by high amount of reinforcement, (iii) the big strut compressive forces developed inside the column-beam connections due to the low height of the beams, and (iv) the fact that the wide beams are wider than the columns, meaning that the contribution of the outer zones to the resistance of the beam-column joints is unreliable because there is no torsion reinforcement. In the orthogonal direction, the behavior is worse since the only members of the slabs that contribute to the lateral resistance are the joists and the façade beams. Moreover, these buildings were designed with codes that did not include ductility requirements and required only a low lateral resistance; indeed, in many cases, seismic action was not considered at all. Consequently, the seismic capacity of these structures is not reliable. The objective of this research is to assess numerically this capability, whereas further research will aim to propose retrofit strategies. The research approach consists of: (i) selecting a number of 3-story and 6-story buildings that represent the vast majority of the existing ones and (ii) evaluating their vulnerability through three types of analyses, namely: code-type, push-over and nonlinear dynamic analysis. Given the low lateral resistance of the main frames, the cooperation of the masonry infill walls is accounted for; for each representative building, three wall densities are considered. The results of the analyses show that the buildings in question exhibit inadequate seismic behavior in most of the examined situations. In general, the relative performance is less deficient for Target Drift CP (Collapse Prevention) than for IO (Immediate Occupancy). Since these buildings are selected to be representative of the vast majority of buildings with wide beams that were constructed in Spain without accounting for any seismic consideration, our conclusions can be extrapolated to a broader scenario.
Resumo:
This paper addresses two aspects of the behavior of interior reinforced concrete waffle flat plate?column connections under lateral loads: the share of the unbalanced moment between flexure and excentric shear, and the effect of the transverse beams. A non-linear finite element model (benchmark model) was developed and calibrated with the results of quasi-static cyclic tests conducted on a 3/5 scale specimen. First, from this numerical model, the portion cv of the unbalanced moment transferred by the excentricity of shear about the centroid of the critical sections defined by Eurocode 2 (EC-2) and by ACI 318-11 was calculated and compared with the share-out prescribed by these codes. It is found that while the critical section of EC-2 is consistent with the cv provided by this code, in the case of ACI 318-11, the value assigned to cv is far below (about 50% smaller) the actual one obtained with the numerical simulations. Second, from the benchmark model, seven additional models were developed by varying the depth D of the transverse beam over the thickness h of the plate. It was found that the ductility of the connection and the effective width of the plate can respectively be increased up to 50% and 10% by raising D/h to 2 and 1.5.
Resumo:
The potential of quasimonoenergetic ion beams for fast ignition (FI) of fusion targets is investigated. Lithium, carbon, aluminium and vanadium ions have been considered here to determine the optimal kinetic energy for each ion type. Our calculations show that the ignition energies of those beams impinging on a standard fuel configuration are similar. However, they are obtained for very different ion energies. Assuming that the ions can be focused onto 10 ?m spots, a new irradiation scheme that reduces substantially the ignition energies is proposed. The combination of using intermediate ions, such as 5.5 GeV vanadium, and the new irradiation scheme allows one to reduce the number of ions required for ignition by roughly three orders of magnitude when compared with the standard proton FI scheme.
Resumo:
This paper presents a simplified finite element (FE) methodology for solving accurately beam models with (Timoshenko) and without (Bernoulli-Euler) shear deformation. Special emphasis is made on showing how it is possible to obtain the exact solution on the nodes and a good accuracy inside the element. The proposed simplifying concept, denominated as the equivalent distributed load (EDL) of any order, is based on the use of Legendre orthogonal polynomials to approximate the original or acting load for computing the results between the nodes. The 1-span beam examples show that this is a promising procedure that allows the aim of using either one FE and an EDL of slightly higher order or by using an slightly larger number of FEs leaving the EDL in the lowest possible order assumed by definition to be equal to 4 independently of how irregular the beam is loaded.
Resumo:
This paper presents the experimental study developed on a prismatic beam with H section, sometimes used in bridges as suspenders, vertical bars or decks. The purpose of this study is to understand the physical behavior of the air around this type of section, in order to reduce the aerodynamic loads, the onset speed of galloping and even to avoid it. To achieve this, a study of the influence of all geometric parameters that define the section has been developed. Previously, the most interesting configurations have been selected using a smoke flow visualization technique in the wind-tunnel, then the corresponding static aerodynamic loads were measured, completed with dynamic tests and, finally, the parameters governing the phenomenon of galloping determined.
Resumo:
The phenomenon of self-induced vibrations of prismatic beams in a cross-flow has been studied for decades, but it is still of great interest due to their important effects in many different industrial applications. This paper presents the experimental study developed on a prismatic beam with H-section.The aim of this analysis is to add some additional insight into the behaviour of the flow around this type of bodies, in order to reduce galloping and even to avoid it. The influence of some relevant geometrical parameters that define the H-section on the translational galloping behaviour of these beams has been analysed. Wind loads coefficients have been measured through static wind tunnel tests and the Den Hartog criterion applied to elucidate the influence of geometrical parameters on the galloping properties of the bodies under consideration.These results have been completed with surface pressure distribution measurements and, besides, dynamic tests have been also performed to verify the static criterion. Finally, the morphology of the flow past the tested bodies has been visualised by using smoke visualization techniques. Since the rectangular section beam is a limiting case of the H-section configuration, the results here obtained are compared with the ones published in the literature concerning rectangular configurations; the agreement is satisfactory.
Resumo:
En el presente trabajo se lleva a cabo un estudio basado en datos obtenidos experimentalmente mediante el ensayo a flexión de vigas de madera de pino silvestre reforzadas con materiales compuestos. Las fibras que componen los tejidos utilizados para la ejecución de los refuerzos son de basalto y de carbono. En el caso de los compuestos de fibra de basalto se aplican en distintos gramajes, y los de carbono en tejido unidireccional y bidireccional. El material compuesto se realizó in situ, simultáneamente a la ejecución del refuerzo. Se aplicaron en una y en dos capas, según el caso, y la forma de colocación fue en ?U?, adhiriéndose al canto inferior y a las caras laterales de la viga mediante resina o mortero epoxi. Se analiza el comportamiento de las vigas según las variables de refuerzo aplicadas y se comparan con los resultados de vigas ensayadas sin reforzar. Con este trabajo queda demostrado el buen funcionamiento del FRP de fibra de basalto aplicado en el refuerzo de vigas de madera y de los tejidos de carbono bidireccionales con respecto a los unidireccionales.
Resumo:
The book represents a very interesting example of the possibility to combine in a single publication basic theory of structures and quite advanced topics on the same subject. The author fulfills this objective in a reasonable size book, less than 400 pages divided into 15 chapters averaging 20 pages each plus 9 short appendices. A diskette is also included in the book. This diskette contains training as well practical executable programs on different aspects of structural analysis, such as cross-sections properties,general-purpose computer programs for the static, dynamic and stability analysis of simple bar structures, etc. The book figures are didactic and have been carefully drawn.