3 resultados para Metal insulator transition
em Universidad Politécnica de Madrid
Resumo:
Within the framework of the third solar cell generation some new ideas to enlarge the spectral response of the solar cells toward the infrared have been proposed. Among them the inclusion of an Intermediate Band (IB) seems to be very promising. This paper will deal with one of the ways to generate the IB namely the deep level center approach. We will discuss not only its existence but also the carriers lifetime recovery which is necessary to obtain the expected increase of the solar cell efficiency.
Resumo:
We have analyzed the increase of the sheet conductance (ΔG□) under spectral illumination in high dose Ti implanted Si samples subsequently processed by pulsed-laser melting. Samples with Ti concentration clearly above the insulator-metal transition limit show a remarkably high ΔG□, even higher than that measured in a silicon reference sample. This increase in the ΔG□ magnitude is contrary to the classic understanding of recombination centers action and supports the lifetime recovery predicted for concentrations of deep levels above the insulator-metal transition.
Resumo:
We have analyzed the spectral sub-bandgap photoresponse of silicon (Si) samples implanted with vanadium (V) at different doses and subsequently processed by pulsed-laser melting. Samples with V concentration clearly above the insulator-metal transition limit show an important increase of the photoresponse with respect to a Si reference sample. Their photoresponse extends into the far infrared region and presents a sharp photoconductivity edge that moves towards lower photon energies as the temperature decreases. The increase of the value of the photoresponse is contrary to the classic understanding of recombination centers action and supports the predictions of the insulator-metal transition theory.