4 resultados para Metafísica

em Universidad Politécnica de Madrid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

La historia de la construcción de las catedrales góticas es la historia de la búsqueda de la luz. Esta afirmación casi metafísica, recoge una realidad asumida por todos los historiadores tanto de la arquitectura antigua como del resto de las artes. La luz en el gótico ha sido descrita bajo múltiples matices como son su carácter simbólico, cromático e incluso místico, sin embargo no existe, en el estudio del conocimiento de la luz gótica, ninguna referencia a la misma como realidad física cuantificable, cualificable y por tanto, clasificable. La presente tesis doctoral aborda el concepto de la iluminación gótica desde una perspectiva nueva. Demuestra, con un método analítico inédito, que la iluminación gótica es cuantificable y cualificable. Para ello analiza en profundidad la iluminación de una selección de 6 edificios muestra, las catedrales de Gerona, Toledo, Sevilla y León, la basílica de Santa María del Mar y la capilla de la Sainte Chapelle de París, mediante una toma de datos “in situ” de iluminación y su comparación con los datos lumínicos obtenidos por un programa de soleamiento de la simulación en tres dimensiones de los distintos proyectos originales góticos. El análisis exhaustivo de las muestras y su introducción en el método analítico descrito, permite determinar, en primer lugar, unas cualidades inéditas que identifican la luz de los espacios góticos según unos parámetros nuevos como son la intensidad, expresividad, recorrido, distorsión y color. También describe cuales son los factores determinantes, de nuevo inéditos, que modulan cada una de las cualidades y en que proporción lo hacen cada uno de ellos. Una vez establecidas las cualidades y los factores que las definen, la tesis doctoral establece los rangos en los que se mueven las distintas cualidades y que conformarán la definitiva clasificación según “tipos de cualidad lumínica”. Adicionalmente, la tesis propone un procedimiento abreviado de acercamiento a la realidad de la iluminación gótica a través de unas fórmulas matemáticas que relacionan los factores geométricos detectados y descritos en la tesis con el resultado luminoso del espacio en lo que concierne a las dos cualidades más importantes de las reflejadas, la intensidad y la expresividad. Gracias a este método y su procedimiento abreviado, la clasificación se hace extensible al resto de catedrales góticas del panorama español y europeo y abre el camino a nuevas clasificaciones de edificios históricos de distintas épocas, iniciando un apasionante camino por recorrer en la recuperación de “la luz original”. Esta clasificación y sus cualidades podrán a su vez, ser utilizadas como herramientas de conocimiento de un factor determinante a la hora de describir cualquier espacio gótico y su aportación pretende ser un nuevo condicionante a tener en cuenta en el futuro, ayudando a entender y respetar, en las posibles intervenciones a realizar sobre el patrimonio arquitectónico, aquello que fue en su inicio motor principal del proyecto arquitectónico y que hoy día no se valora suficientemente tan solo por falta de conocimiento: su luz. The history of the construction of the Gothic cathedrals is the history of the search for light. This almost etaphysical statement reflects a reality accepted by all historians both of ancient architecture and other arts. Light in the Gothic period has been described under multiple approaches such as its symbolic, chromatic and even mystical character. However, in the study of the Gothic light, no references exist to it as a physical quantifiable and qualifiable reality and therefore, classifiable. This dissertation deals with the concept of Gothic light from a new perspective. With a new analytical method, it shows that Gothic lighting is quantifiable and can be classified regarding quality. To this end, a selection of 6 buildings light samples are analyzed; the cathedrals of Gerona, Toledo, Seville and León, the basilica of Santa María of the Sea and the Sainte Chapelle in Paris. "In situ" lighting data is collected and it is compared with lighting data obtained by a program of sunlight of the 3D simulation of various Gothic original projects. The comprehensive analysis of the samples and the data introduced in the analytical method described, allows determining, first, important qualities that identify the light of Gothic spaces according to new parameters such as intensity, expressiveness, trajectory, distortion and color. It also describes the determinant factors, which modulate each of the qualities and in what proportion they do it. Once the qualities and factors that define them have been established, in this doctoral dissertation the ranges regarding different qualities are set, which will make up the final classification according to "types of light quality". In addition, this work proposes an abbreviated procedure approach to the reality of the Gothic lighting through some mathematical formulae, relating the geometric factors identified and described in the study with the bright result of space regarding the two most important qualities of the light,intensity and expressiveness. Thanks to this method and to the abbreviated procedure, the classification can be applied to other Spanish and European Gothic cathedrals and opens up the way to new classifications of historic buildings from different eras, starting an exciting road ahead in the recovery of the "original light". This classification and its qualities may in turn be used as tools to know a determinant factor when describing any Gothic space. Its contribution is intended to be a new conditioning factor to keep in mind in the future, helping to understand and respect, in possible interventions on the architectural heritage, what was the main engine to start the architectural project and which today is not valued enough due to the lack knowledge: the light.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Project you are about to see it is based on the technologies used on object detection and recognition, especially on leaves and chromosomes. To do so, this document contains the typical parts of a scientific paper, as it is what it is. It is composed by an Abstract, an Introduction, points that have to do with the investigation area, future work, conclusions and references used for the elaboration of the document. The Abstract talks about what are we going to find in this paper, which is technologies employed on pattern detection and recognition for leaves and chromosomes and the jobs that are already made for cataloguing these objects. In the introduction detection and recognition meanings are explained. This is necessary as many papers get confused with these terms, specially the ones talking about chromosomes. Detecting an object is gathering the parts of the image that are useful and eliminating the useless parts. Summarizing, detection would be recognizing the objects borders. When talking about recognition, we are talking about the computers or the machines process, which says what kind of object we are handling. Afterwards we face a compilation of the most used technologies in object detection in general. There are two main groups on this category: Based on derivatives of images and based on ASIFT points. The ones that are based on derivatives of images have in common that convolving them with a previously created matrix does the treatment of them. This is done for detecting borders on the images, which are changes on the intensity of the pixels. Within these technologies we face two groups: Gradian based, which search for maximums and minimums on the pixels intensity as they only use the first derivative. The Laplacian based methods search for zeros on the pixels intensity as they use the second derivative. Depending on the level of details that we want to use on the final result, we will choose one option or the other, because, as its logic, if we used Gradian based methods, the computer will consume less resources and less time as there are less operations, but the quality will be worse. On the other hand, if we use the Laplacian based methods we will need more time and resources as they require more operations, but we will have a much better quality result. After explaining all the derivative based methods, we take a look on the different algorithms that are available for both groups. The other big group of technologies for object recognition is the one based on ASIFT points, which are based on 6 image parameters and compare them with another image taking under consideration these parameters. These methods disadvantage, for our future purposes, is that it is only valid for one single object. So if we are going to recognize two different leaves, even though if they refer to the same specie, we are not going to be able to recognize them with this method. It is important to mention these types of technologies as we are talking about recognition methods in general. At the end of the chapter we can see a comparison with pros and cons of all technologies that are employed. Firstly comparing them separately and then comparing them all together, based on our purposes. Recognition techniques, which are the next chapter, are not really vast as, even though there are general steps for doing object recognition, every single object that has to be recognized has its own method as the are different. This is why there is not a general method that we can specify on this chapter. We now move on into leaf detection techniques on computers. Now we will use the technique explained above based on the image derivatives. Next step will be to turn the leaf into several parameters. Depending on the document that you are referring to, there will be more or less parameters. Some papers recommend to divide the leaf into 3 main features (shape, dent and vein] and doing mathematical operations with them we can get up to 16 secondary features. Next proposition is dividing the leaf into 5 main features (Diameter, physiological length, physiological width, area and perimeter] and from those, extract 12 secondary features. This second alternative is the most used so it is the one that is going to be the reference. Following in to leaf recognition, we are based on a paper that provides a source code that, clicking on both leaf ends, it automatically tells to which specie belongs the leaf that we are trying to recognize. To do so, it only requires having a database. On the tests that have been made by the document, they assure us a 90.312% of accuracy over 320 total tests (32 plants on the database and 10 tests per specie]. Next chapter talks about chromosome detection, where we shall pass the metaphasis plate, where the chromosomes are disorganized, into the karyotype plate, which is the usual view of the 23 chromosomes ordered by number. There are two types of techniques to do this step: the skeletonization process and swiping angles. Skeletonization progress consists on suppressing the inside pixels of the chromosome to just stay with the silhouette. This method is really similar to the ones based on the derivatives of the image but the difference is that it doesnt detect the borders but the interior of the chromosome. Second technique consists of swiping angles from the beginning of the chromosome and, taking under consideration, that on a single chromosome we cannot have more than an X angle, it detects the various regions of the chromosomes. Once the karyotype plate is defined, we continue with chromosome recognition. To do so, there is a technique based on the banding that chromosomes have (grey scale bands] that make them unique. The program then detects the longitudinal axis of the chromosome and reconstructs the band profiles. Then the computer is able to recognize this chromosome. Concerning the future work, we generally have to independent techniques that dont reunite detection and recognition, so our main focus would be to prepare a program that gathers both techniques. On the leaf matter we have seen that, detection and recognition, have a link as both share the option of dividing the leaf into 5 main features. The work that would have to be done is to create an algorithm that linked both methods, as in the program, which recognizes leaves, it has to be clicked both leaf ends so it is not an automatic algorithm. On the chromosome side, we should create an algorithm that searches for the beginning of the chromosome and then start to swipe angles, to later give the parameters to the program that searches for the band profiles. Finally, on the summary, we explain why this type of investigation is needed, and that is because with global warming, lots of species (animals and plants] are beginning to extinguish. That is the reason why a big database, which gathers all the possible species, is needed. For recognizing animal species, we just only have to have the 23 chromosomes. While recognizing a plant, there are several ways of doing it, but the easiest way to input a computer is to scan the leaf of the plant. RESUMEN. El proyecto que se puede ver a continuación trata sobre las tecnologías empleadas en la detección y reconocimiento de objetos, especialmente de hojas y cromosomas. Para ello, este documento contiene las partes típicas de un paper de investigación, puesto que es de lo que se trata. Así, estará compuesto de Abstract, Introducción, diversos puntos que tengan que ver con el área a investigar, trabajo futuro, conclusiones y biografía utilizada para la realización del documento. Así, el Abstract nos cuenta qué vamos a poder encontrar en este paper, que no es ni más ni menos que las tecnologías empleadas en el reconocimiento y detección de patrones en hojas y cromosomas y qué trabajos hay existentes para catalogar a estos objetos. En la introducción se explican los conceptos de qué es la detección y qué es el reconocimiento. Esto es necesario ya que muchos papers científicos, especialmente los que hablan de cromosomas, confunden estos dos términos que no podían ser más sencillos. Por un lado tendríamos la detección del objeto, que sería simplemente coger las partes que nos interesasen de la imagen y eliminar aquellas partes que no nos fueran útiles para un futuro. Resumiendo, sería reconocer los bordes del objeto de estudio. Cuando hablamos de reconocimiento, estamos refiriéndonos al proceso que tiene el ordenador, o la máquina, para decir qué clase de objeto estamos tratando. Seguidamente nos encontramos con un recopilatorio de las tecnologías más utilizadas para la detección de objetos, en general. Aquí nos encontraríamos con dos grandes grupos de tecnologías: Las basadas en las derivadas de imágenes y las basadas en los puntos ASIFT. El grupo de tecnologías basadas en derivadas de imágenes tienen en común que hay que tratar a las imágenes mediante una convolución con una matriz creada previamente. Esto se hace para detectar bordes en las imágenes que son básicamente cambios en la intensidad de los píxeles. Dentro de estas tecnologías nos encontramos con dos grupos: Los basados en gradientes, los cuales buscan máximos y mínimos de intensidad en la imagen puesto que sólo utilizan la primera derivada; y los Laplacianos, los cuales buscan ceros en la intensidad de los píxeles puesto que estos utilizan la segunda derivada de la imagen. Dependiendo del nivel de detalles que queramos utilizar en el resultado final nos decantaremos por un método u otro puesto que, como es lógico, si utilizamos los basados en el gradiente habrá menos operaciones por lo que consumirá más tiempo y recursos pero por la contra tendremos menos calidad de imagen. Y al revés pasa con los Laplacianos, puesto que necesitan más operaciones y recursos pero tendrán un resultado final con mejor calidad. Después de explicar los tipos de operadores que hay, se hace un recorrido explicando los distintos tipos de algoritmos que hay en cada uno de los grupos. El otro gran grupo de tecnologías para el reconocimiento de objetos son los basados en puntos ASIFT, los cuales se basan en 6 parámetros de la imagen y la comparan con otra imagen teniendo en cuenta dichos parámetros. La desventaja de este método, para nuestros propósitos futuros, es que sólo es valido para un objeto en concreto. Por lo que si vamos a reconocer dos hojas diferentes, aunque sean de la misma especie, no vamos a poder reconocerlas mediante este método. Aún así es importante explicar este tipo de tecnologías puesto que estamos hablando de técnicas de reconocimiento en general. Al final del capítulo podremos ver una comparación con los pros y las contras de todas las tecnologías empleadas. Primeramente comparándolas de forma separada y, finalmente, compararemos todos los métodos existentes en base a nuestros propósitos. Las técnicas de reconocimiento, el siguiente apartado, no es muy extenso puesto que, aunque haya pasos generales para el reconocimiento de objetos, cada objeto a reconocer es distinto por lo que no hay un método específico que se pueda generalizar. Pasamos ahora a las técnicas de detección de hojas mediante ordenador. Aquí usaremos la técnica explicada previamente explicada basada en las derivadas de las imágenes. La continuación de este paso sería diseccionar la hoja en diversos parámetros. Dependiendo de la fuente a la que se consulte pueden haber más o menos parámetros. Unos documentos aconsejan dividir la morfología de la hoja en 3 parámetros principales (Forma, Dentina y ramificación] y derivando de dichos parámetros convertirlos a 16 parámetros secundarios. La otra propuesta es dividir la morfología de la hoja en 5 parámetros principales (Diámetro, longitud fisiológica, anchura fisiológica, área y perímetro] y de ahí extraer 12 parámetros secundarios. Esta segunda propuesta es la más utilizada de todas por lo que es la que se utilizará. Pasamos al reconocimiento de hojas, en la cual nos hemos basado en un documento que provee un código fuente que cucando en los dos extremos de la hoja automáticamente nos dice a qué especie pertenece la hoja que estamos intentando reconocer. Para ello sólo hay que formar una base de datos. En los test realizados por el citado documento, nos aseguran que tiene un índice de acierto del 90.312% en 320 test en total (32 plantas insertadas en la base de datos por 10 test que se han realizado por cada una de las especies]. El siguiente apartado trata de la detección de cromosomas, en el cual se debe de pasar de la célula metafásica, donde los cromosomas están desorganizados, al cariotipo, que es como solemos ver los 23 cromosomas de forma ordenada. Hay dos tipos de técnicas para realizar este paso: Por el proceso de esquelotonización y barriendo ángulos. El proceso de esqueletonización consiste en eliminar los píxeles del interior del cromosoma para quedarse con su silueta; Este proceso es similar a los métodos de derivación de los píxeles pero se diferencia en que no detecta bordes si no que detecta el interior de los cromosomas. La segunda técnica consiste en ir barriendo ángulos desde el principio del cromosoma y teniendo en cuenta que un cromosoma no puede doblarse más de X grados detecta las diversas regiones de los cromosomas. Una vez tengamos el cariotipo, se continua con el reconocimiento de cromosomas. Para ello existe una técnica basada en las bandas de blancos y negros que tienen los cromosomas y que son las que los hacen únicos. Para ello el programa detecta los ejes longitudinales del cromosoma y reconstruye los perfiles de las bandas que posee el cromosoma y que lo identifican como único. En cuanto al trabajo que se podría desempeñar en el futuro, tenemos por lo general dos técnicas independientes que no unen la detección con el reconocimiento por lo que se habría de preparar un programa que uniese estas dos técnicas. Respecto a las hojas hemos visto que ambos métodos, detección y reconocimiento, están vinculados debido a que ambos comparten la opinión de dividir las hojas en 5 parámetros principales. El trabajo que habría que realizar sería el de crear un algoritmo que conectase a ambos ya que en el programa de reconocimiento se debe clicar a los dos extremos de la hoja por lo que no es una tarea automática. En cuanto a los cromosomas, se debería de crear un algoritmo que busque el inicio del cromosoma y entonces empiece a barrer ángulos para después poder dárselo al programa que busca los perfiles de bandas de los cromosomas. Finalmente, en el resumen se explica el por qué hace falta este tipo de investigación, esto es que con el calentamiento global, muchas de las especies (tanto animales como plantas] se están empezando a extinguir. Es por ello que se necesitará una base de datos que contemple todas las posibles especies tanto del reino animal como del reino vegetal. Para reconocer a una especie animal, simplemente bastará con tener sus 23 cromosomas; mientras que para reconocer a una especie vegetal, existen diversas formas. Aunque la más sencilla de todas es contar con la hoja de la especie puesto que es el elemento más fácil de escanear e introducir en el ordenador.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Desde un punto de vista histórico, la emotividad ha sido expuesta como el gran objetivo de todo proceso educativo. Sin embargo, abordando la realidad "creatividad" desde ángulos de una filosofía crítica, esta realidad puede aparecer: 1) como un concepto indeterminado en sí mismo, 2) como una realidad conceptual, 3) como una consecuencia del desarrolla profundo de la personalidad. La crítica de las dos primeras acepciones pertenece al ámbito de una filosofía metafísica, que abordaré sólo como punto dialéctico de referencia. La tercera acepción enclavada en un ámbito de filosofía psicológica, es el tema origen de este trabajo que desarrollaré según el esquema siguiente: a) Análisis de los factores determinantes de la creatividad. b) Descripción de experiencias. c) Posibilidades de desarrollo en la Educación Física. Mi postura ante este desarrollo se asienta deliberadamente sobre bases descriptivas y empíricas, intentando el análisis de la realidad “creatividad" a partir de un análisis crítico de lo que considero como factores determinantes del concepto real de creatividad.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Los llamados procesos creativos en general, y los del proyectar arquitectónico en particular, mantienen aproximaciones hacia el objeto centradas principalmente en el procedimiento, es decir, en lo estratégico, lo metodológico o/y lo paradigmático. En ellas, además, el potencial de información no suele ser completo ni contemplado o, si lo ha sido, de manera inconciente, o referido de nuevo a lo procedimental. Igualmente, se centra el interés de estas aproximaciones, o en el objeto propuesto o resultado, o en lo procesal, pero sin atender a su constitución, es decir, a la información misma. Por tanto, y como reclama la física, la base constituyente informacional de estas aproximaciones, no ha sido considerada hasta ahora, ni se ha intentado sistematizar. Junto a esta omisión, estos acercamientos no permiten que cada humano configure de manera autónoma, independiente e íntegramente su propio proceso pues, los comentados procedimientos, están apoyados en marcos contextuales, culturales o/y procesales, reflejando así una orientación limitada en espacio-tiempo. Es así que se propone una potencia, o “aquellas cualidades poseídas por las cosas en cuya virtud éstas son totalmente impasibles o inmutables, o no se dejan cambiar fácilmente…”, según la define Aristóteles en “Metafísica”, como la posibilidad de, a la vez, aludir a un abanico informacional completo y apuntar hacia la íntegra elaboración de un proceso personal propio. Desde lo informacional, que a su vez es energético dependiendo de la disciplina científica considerada, se diferencian, en primer lugar, unos atributos o términos mínimos, que son unas potencias que compendian el abanico informacional completo. Es decir, son mínimos máximos. Estos atributos forman la fase cualitativa de la información a la que se llama acompañamiento. En segundo lugar, y apoyado tanto en el funcionamiento cerebral, en el espacio-tiempo cuántico, como en los nuevos experimentos e investigaciones de la biología, la física y la neurociencia en especial, se abren líneas nuevas para acceder a la información, antes contemplada de manera lineal, local y como entidad separada. Por ello, esta segunda aproximación presenta una potencia de intensificación de datos, que permite un aumento de los mismos en el cerebro y, por ello, la posibilidad de evitar el problema del “papel en blanco”. A esta fase se la nombra promoción. En tercer lugar, ambas fases constituyen la generación como propuesta de tesis, siendo la misma un cambio de cualquier tipo en el que alguien es agente de algo, específicamente, cuando un humano es mediador entre sucesos. Fusionando ambas, se añade simultáneamente una con-formación potencial global, que es sinérgicamente más que la suma de las dos anteriores. De esta manera agrupadora, y con objeto de materializar y sistematizar ahora esta generación o potencia, se presenta una puesta en práctica. Para ello, se desarrolla un modelo analítico-geométrico-paramétrico y se expone su aplicación en dicho caso práctico. Además, dicho modelo presenta un funcionamiento autorreferido u holográfico, reflejando tanto a los estudios científicos revisados, como al propio funcionamiento de los atributos o/y de todas las potencias que se presentan en esta investigación. ABSTRACT Generally speaking the so-called creative processes, and particularly those of the architectural design, keep approaches into the object oriented mainly in the process, so to speak, into the strategical, the methodological and/ or into the paradigmatic. In addition, they don’t usually take into account the potential of information neither in a complete manner nor even contemplated or, if considered, worked out unconsciously, or referred back to the procedural. Similarly, the interest of these approaches is focused either in the proposed object or the output, or in the processual, but leaving their constituent out, being it the information itself. Therefore, as physics is claiming nowadays, the constituent core of these approaches have neither been taken into account so far, nor tried to systematize. Along with this omission, these approaches do not allow each human being to set up autonomously, independently and entirely her/ his own process, because the mentioned procedures are supported by contextual, cultural and/ or procedural frameworks, reflecting then a perspective limited in space-time. Thus a potency is proposed, or "those qualities possessed by things under which they are totally impassive or immutable, or are not easily changed...", as defined by Aristotle in "Metaphysics", as the possibility to, and at the same time, alluding to a full informational range and point out to a whole development of an own personal process. From the informational stand, which in turn is energetic depending on the scientific discipline considered, it is distinguished, in the first place, a minimum set of attributes or terms, which are potencies that summarize the full informational range. That is, they are maximum minimums. These attributes build up the qualitative phase of the information being called accompaniment. Secondly, and supported in the brain functioning, in quantum space-time, as in new experiments and research carried out by biology, physics and neuroscience especially, new lines to access information are being opened, being contemplated linearly, locally and as a detached entity before. Thus, this second approach comes up with a potency of data`s intensifying that allows an increase in the brain thereof and, therefore, the possibility of avoiding the problem of "the blank paper". Promotion is how this phase is appointed. In the third place, both phases form the generation as the dissertation proposal, being it a change of any kind in which someone is the agent of something, specifically, when a human being is the mediator in between events. Fusing both of them, a global potential formation-with is added simultaneously, which is synergistically greater than the sum of the previous two. In this grouping way, and now in order to materialize and systemize this generation or potency, an implementation is displayed. To this end, an analytical-geometrical-parametrical model is developed and put into practice as a case study. In addition, this model features a self-referral or holographic functioning, being aligned to both scientific reviewed studies, and the very functioning either of the attributes and/ or all the potencies that are introduced in this research.