6 resultados para Melnikov chaos prediction theory

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

La gestión del tráfico aéreo (Air Traffic Management, ATM) está experimentando un cambio de paradigma hacia las denominadas operaciones basadas trayectoria. Bajo dicho paradigma se modifica el papel de los controladores de tráfico aéreo desde una operativa basada su intervención táctica continuada hacia una labor de supervisión a más largo plazo. Esto se apoya en la creciente confianza en las soluciones aportadas por las herramientas automatizadas de soporte a la decisión más modernas. Para dar soporte a este concepto, se precisa una importante inversión para el desarrollo, junto con la adquisición de nuevos equipos en tierra y embarcados, que permitan la sincronización precisa de la visión de la trayectoria, basada en el intercambio de información entre ambos actores. Durante los últimos 30 a 40 años las aerolíneas han generado uno de los menores retornos de la inversión de entre todas las industrias. Sin beneficios tangibles, la industria aérea tiene dificultades para atraer el capital requerido para su modernización, lo que retrasa la implantación de dichas mejoras. Esta tesis tiene como objetivo responder a la pregunta de si las capacidades actualmente instaladas en las aeronaves comerciales se pueden aplicar para lograr la sincronización de la trayectoria con el nivel de calidad requerido. Además, se analiza en ella si, conjuntamente con mejoras en las herramientas de predicción trayectorias instaladas en tierra en para facilitar la gestión de las arribadas, dichas capacidades permiten obtener los beneficios esperados en el marco de las operaciones basadas en trayectoria. Esto podría proporcionar un incentivo para futuras actualizaciones de la aviónica que podrían llevar a mejoras adicionales. El concepto operacional propuesto en esta tesis tiene como objetivo permitir que los aviones sean pilotados de una manera consistente con las técnicas actuales de vuelo optimizado. Se permite a las aeronaves que desciendan en el denominado “modo de ángulo de descenso gestionado” (path-managed mode), que es el preferido por la mayoría de las compañías aéreas, debido a que conlleva un reducido consumo de combustible. El problema de este modo es que en él no se controla de forma activa el tiempo de llegada al punto de interés. En nuestro concepto operacional, la incertidumbre temporal se gestiona en mediante de la medición del tiempo en puntos estratégicamente escogidos a lo largo de la trayectoria de la aeronave, y permitiendo la modificación por el control de tierra de la velocidad de la aeronave. Aunque la base del concepto es la gestión de las ordenes de velocidad que se proporcionan al piloto, para ser capaces de operar con los niveles de equipamiento típicos actualmente, dicho concepto también constituye un marco en el que la aviónica más avanzada (por ejemplo, que permita el control por el FMS del tiempo de llegada) puede integrarse de forma natural, una vez que esta tecnología este instalada. Además de gestionar la incertidumbre temporal a través de la medición en múltiples puntos, se intenta reducir dicha incertidumbre al mínimo mediante la mejora de las herramienta de predicción de la trayectoria en tierra. En esta tesis se presenta una novedosa descomposición del proceso de predicción de trayectorias en dos etapas. Dicha descomposición permite integrar adecuadamente los datos de la trayectoria de referencia calculada por el Flight Management System (FMS), disponibles usando Futuro Sistema de Navegación Aérea (FANS), en el sistema de predicción de trayectorias en tierra. FANS es un equipo presente en los aviones comerciales de fuselaje ancho actualmente en la producción, e incluso algunos aviones de fuselaje estrecho pueden tener instalada avionica FANS. Además de informar automáticamente de la posición de la aeronave, FANS permite proporcionar (parte de) la trayectoria de referencia en poder de los FMS, pero la explotación de esta capacidad para la mejora de la predicción de trayectorias no se ha estudiado en profundidad en el pasado. La predicción en dos etapas proporciona una solución adecuada al problema de sincronización de trayectorias aire-tierra dado que permite la sincronización de las dimensiones controladas por el sistema de guiado utilizando la información de la trayectoria de referencia proporcionada mediante FANS, y también facilita la mejora en la predicción de las dimensiones abiertas restantes usado un modelo del guiado que explota los modelos meteorológicos mejorados disponibles en tierra. Este proceso de predicción de la trayectoria de dos etapas se aplicó a una muestra de 438 vuelos reales que realizaron un descenso continuo (sin intervención del controlador) con destino Melbourne. Dichos vuelos son de aeronaves del modelo Boeing 737-800, si bien la metodología descrita es extrapolable a otros tipos de aeronave. El método propuesto de predicción de trayectorias permite una mejora en la desviación estándar del error de la estimación del tiempo de llegada al punto de interés, que es un 30% menor que la que obtiene el FMS. Dicha trayectoria prevista mejorada se puede utilizar para establecer la secuencia de arribadas y para la asignación de las franjas horarias para cada aterrizaje (slots). Sobre la base del slot asignado, se determina un perfil de velocidades que permita cumplir con dicho slot con un impacto mínimo en la eficiencia del vuelo. En la tesis se propone un nuevo algoritmo que determina las velocidades requeridas sin necesidad de un proceso iterativo de búsqueda sobre el sistema de predicción de trayectorias. El algoritmo se basa en una parametrización inteligente del proceso de predicción de la trayectoria, que permite relacionar el tiempo estimado de llegada con una función polinómica. Resolviendo dicho polinomio para el tiempo de llegada deseado, se obtiene de forma natural el perfil de velocidades optimo para cumplir con dicho tiempo de llegada sin comprometer la eficiencia. El diseño de los sistemas de gestión de arribadas propuesto en esta tesis aprovecha la aviónica y los sistemas de comunicación instalados de un modo mucho más eficiente, proporcionando valor añadido para la industria. Por tanto, la solución es compatible con la transición hacia los sistemas de aviónica avanzados que están desarrollándose actualmente. Los beneficios que se obtengan a lo largo de dicha transición son un incentivo para inversiones subsiguientes en la aviónica y en los sistemas de control de tráfico en tierra. ABSTRACT Air traffic management (ATM) is undergoing a paradigm shift towards trajectory based operations where the role of an air traffic controller evolves from that of continuous intervention towards supervision, as decision making is improved based on increased confidence in the solutions provided by advanced automation. To support this concept, significant investment for the development and acquisition of new equipment is required on the ground as well as in the air, to facilitate the high degree of trajectory synchronisation and information exchange required. Over the past 30-40 years the airline industry has generated one of the lowest returns on invested capital among all industries. Without tangible benefits realised, the airline industry may find it difficult to attract the required investment capital and delay acquiring equipment needed to realise the concept of trajectory based operations. In response to these challenges facing the modernisation of ATM, this thesis aims to answer the question whether existing aircraft capabilities can be applied to achieve sufficient trajectory synchronisation and improvements to ground-based trajectory prediction in support of the arrival management process, to realise some of the benefits envisioned under trajectory based operations, and to provide an incentive for further avionics upgrades. The proposed operational concept aims to permit aircraft to operate in a manner consistent with current optimal aircraft operating techniques. It allows aircraft to descend in the fuel efficient path managed mode as preferred by a majority of airlines, with arrival time not actively controlled by the airborne automation. The temporal uncertainty is managed through metering at strategically chosen points along the aircraft’s trajectory with primary use of speed advisories. While the focus is on speed advisories to support all aircraft and different levels of equipage, the concept also constitutes a framework in which advanced avionics as airborne time-of-arrival control can be integrated once this technology is widely available. In addition to managing temporal uncertainty through metering at multiple points, this temporal uncertainty is minimised by improving the supporting trajectory prediction capability. A novel two-stage trajectory prediction process is presented to adequately integrate aircraft trajectory data available through Future Air Navigation Systems (FANS) into the ground-based trajectory predictor. FANS is standard equipment on any wide-body aircraft in production today, and some single-aisle aircraft are easily capable of being fitted with FANS. In addition to automatic position reporting, FANS provides the ability to provide (part of) the reference trajectory held by the aircraft’s Flight Management System (FMS), but this capability has yet been widely overlooked. The two-stage process provides a ‘best of both world’s’ solution to the air-ground synchronisation problem by synchronising with the FMS reference trajectory those dimensions controlled by the guidance mode, and improving on the prediction of the remaining open dimensions by exploiting the high resolution meteorological forecast available to a ground-based system. The two-stage trajectory prediction process was applied to a sample of 438 FANS-equipped Boeing 737-800 flights into Melbourne conducting a continuous descent free from ATC intervention, and can be extrapolated to other types of aircraft. Trajectories predicted through the two-stage approach provided estimated time of arrivals with a 30% reduction in standard deviation of the error compared to estimated time of arrival calculated by the FMS. This improved predicted trajectory can subsequently be used to set the sequence and allocate landing slots. Based on the allocated landing slot, the proposed system calculates a speed schedule for the aircraft to meet this landing slot at minimal flight efficiency impact. A novel algorithm is presented that determines this speed schedule without requiring an iterative process in which multiple calls to a trajectory predictor need to be made. The algorithm is based on parameterisation of the trajectory prediction process, allowing the estimate time of arrival to be represented by a polynomial function of the speed schedule, providing an analytical solution to the speed schedule required to meet a set arrival time. The arrival management solution proposed in this thesis leverages the use of existing avionics and communications systems resulting in new value for industry for current investment. The solution therefore supports a transition concept from mixed equipage towards advanced avionics currently under development. Benefits realised under this transition may provide an incentive for ongoing investment in avionics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A generic, sudden transition to chaos has been experimentally verified using electronic circuits. The particular system studied involves the near resonance of two coupled oscillators at 2:1 frequency ratio when the damping of the first oscillator becomes negative. We identified in the experiment all types of orbits described by theory. We also found that a theoretical, ID limit map fits closely a map of the experimental attractor which, however, could be strongly disturbed by noise. In particular, we found noisy periodic orbits, in good agreement with noise theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A possible approach to the synchronization of chaotic circuits is reported. It is based on an Optically Programmable Logic Cell and the signals are fully digital. A method to study the characteristics of the obtained chaos is reported as well as a new technique to compare the obtained chaos from an emitter and a receiver. This technique allows the synchronization of chaotic signals. The signals received at the receiver, composed by the addition of information and chaotic signals, are compared with the chaos generated there and a pure information signal can be detected. Its application to cryptography in Optical Communications comes directly from these properties. The model here presented is based on a computer simulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective The main purpose of this research is the novel use of artificial metaplasticity on multilayer perceptron (AMMLP) as a data mining tool for prediction the outcome of patients with acquired brain injury (ABI) after cognitive rehabilitation. The final goal aims at increasing knowledge in the field of rehabilitation theory based on cognitive affectation. Methods and materials The data set used in this study contains records belonging to 123 ABI patients with moderate to severe cognitive affectation (according to Glasgow Coma Scale) that underwent rehabilitation at Institut Guttmann Neurorehabilitation Hospital (IG) using the tele-rehabilitation platform PREVIRNEC©. The variables included in the analysis comprise the neuropsychological initial evaluation of the patient (cognitive affectation profile), the results of the rehabilitation tasks performed by the patient in PREVIRNEC© and the outcome of the patient after a 3–5 months treatment. To achieve the treatment outcome prediction, we apply and compare three different data mining techniques: the AMMLP model, a backpropagation neural network (BPNN) and a C4.5 decision tree. Results The prediction performance of the models was measured by ten-fold cross validation and several architectures were tested. The results obtained by the AMMLP model are clearly superior, with an average predictive performance of 91.56%. BPNN and C4.5 models have a prediction average accuracy of 80.18% and 89.91% respectively. The best single AMMLP model provided a specificity of 92.38%, a sensitivity of 91.76% and a prediction accuracy of 92.07%. Conclusions The proposed prediction model presented in this study allows to increase the knowledge about the contributing factors of an ABI patient recovery and to estimate treatment efficacy in individual patients. The ability to predict treatment outcomes may provide new insights toward improving effectiveness and creating personalized therapeutic interventions based on clinical evidence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The classical theory of intermittency developed for return maps assumes uniform density of points reinjected from the chaotic to laminar region. Though it works fine in some model systems, there exist a number of so-called pathological cases characterized by a significant deviation of main characteristics from the values predicted on the basis of the uniform distribution. Recently, we reported on how the reinjection probability density (RPD) can be generalized. Here, we extend this methodology and apply it to different dynamical systems exhibiting anomalous type-II and type-III intermittencies. Estimation of the universal RPD is based on fitting a linear function to experimental data and requires no a priori knowledge on the dynamical model behind. We provide special fitting procedure that enables robust estimation of the RPD from relatively short data sets (dozens of points). Thus, the method is applicable for a wide variety of data sets including numerical simulations and real-life experiments. Estimated RPD enables analytic evaluation of the length of the laminar phase of intermittent behaviors. We show that the method copes well with dynamical systems exhibiting significantly different statistics reported in the literature. We also derive and classify characteristic relations between the mean laminar length and main controlling parameter in perfect agreement with data provided by numerical simulations

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a new algorithm for the design of prediction structures with low delay and limited penalty in the rate-distortion performance for multiview video coding schemes. This algorithm constitutes one of the elements of a framework for the analysis and optimization of delay in multiview coding schemes that is based in graph theory. The objective of the algorithm is to find the best combination of prediction dependencies to prune from a multiview prediction structure, given a number of cuts. Taking into account the properties of the graph-based analysis of the encoding delay, the algorithm is able to find the best prediction dependencies to eliminate from an original prediction structure, while limiting the number of cut combinations to evaluate. We show that this algorithm obtains optimum results in the reduction of the encoding latency with a lower computational complexity than exhaustive search alternatives.