3 resultados para Mediterranean History

em Universidad Politécnica de Madrid


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We reconstructed vegetation responses to climate oscillations, fire and human activities since the last glacial maximum in inland NW Iberia, where previous paleoecological research is scarce. Extremely sparse and open vegetation composed of steppic grasslands and heathlands with scattered pioneer trees suggests very cold and dry conditions during the Oldest Dryas, unsuitable for tree survival in the surroundings of the study site. Slight woodland expansion during the Bolling/Allerod was interrupted by the Younger Dryas cooling. Pinewoods dominated for most of the early Holocene, when a marked increase in fire activity occurred. Deciduous trees expanded later reaching their maximum representation during the mid-Holocene. Enhanced fire activity and the presence of coprophilous fungi around 6400-6000 cal yr BP suggest an early human occupation around the site. However, extensive deforestation only started at 4500 calyrBP, when fire was used to clear the tree canopy. Final replacement of woodlands with heathlands, grasslands and cereal crops occurred from 2700 cal yr BP onwards due to land-use intensification. Our paleoecological record can help efforts aimed at restoring the natural vegetation by indicating which communities were dominant at the onset of heavy human impact, thus promoting the recovery of currently rare oak and alder stands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The origins of some species of economic importance occurring over the Mediterranean Basin have been a traditional matter of debate that has important implications for land management. The case of Pinus pinea L. (Stone pine) is probably one of the most controversial, due to its documented long-term interaction with humans and its presence as a symbolic tree in certain areas of the Mediterranean (e.g., southwestern Iberia and Tuscany). Among the rest of the Mediterranean pines, several features make this pine unique (it has a characteristic crown shape, an edible kernel, cones that require three years to mature, and a very depauperate genetic diversity across its range). In addition, its palaeoecological information is rather limited, as the taxonomic precision attained by pollen analysts is insufficient for this tree and macroremains (such as kernels or anatomically well preserved wood) are needed to unequivocally detect the species in the fossil record. Recent findings of macrofossils of Pinus pinea in inland Iberia (Duero Basin) extend the late- Holocene range of the species, but the palaeobiogeographical information and the exhaustive genetic data available still suggest a very limited natural area (but still not sufficiently well defined) and a long and intense history of linkage to humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PREMISE OF THE STUDY: We conducted environmental niche modeling (ENM) of the Brachypodium distachyon s.l. complex, a model group of two diploid annual grasses ( B. distachyon , B. stacei ) and their derived allotetraploid ( B. hybridum) , native to the circum-Mediterranean region. We (1) investigated the ENMs of the three species in their native range based on present and past climate data; (2) identifi ed potential overlapping niches of the diploids and their hybrid across four Quaternary windows; (3) tested whether speciation was associated with niche divergence/conservatism in the complex species; and (4) tested for the potential of the polyploid outperforming the diploids in the native range. M ETHODS: Geo-referenced data, altitude, and 19 climatic variables were used to construct the ENMs. We used paleoclimate niche models to trace the potential existence of ancestral gene fl ow among the hybridizing species of the complex. KEY RESULTS: Brachypodium distachyon grows in higher, cooler, and wetter places, B. stacei in lower, warmer, and drier places, and B. hybridum in places with intermediate climatic features. Brachypodium hybridum had the largest niche overlap with its parent niches, but a similar distribution range and niche breadth. C ONCLUSIONS: Each species had a unique environmental niche though there were multiple niche overlapping areas for the diploids across time, suggesting the potential existence of several hybrid zones during the Pleistocene and the Holocene. No evidence of niche divergence was found, suggesting that species diversifi cation was not driven by ecological speciation but by evolutionary history, though it could be associated to distinct environmental adaptations.