3 resultados para Medical simulation
em Universidad Politécnica de Madrid
Resumo:
BioMet®Tools is a set of software applications developed for the biometrical characterization of voice in different fields as voice quality evaluation in laryngology, speech therapy and rehabilitation, education of the singing voice, forensic voice analysis in court, emotional detection in voice, secure access to facilities and services, etc. Initially it was conceived as plain research code to estimate the glottal source from voice and obtain the biomechanical parameters of the vocal folds from the spectral density of the estimate. This code grew to what is now the Glottex®Engine package (G®E). Further demands from users in medical and forensic fields instantiated the development of different Graphic User Interfaces (GUI’s) to encapsulate user interaction with the G®E. This required the personalized design of different GUI’s handling the same G®E. In this way development costs and time could be saved. The development model is described in detail leading to commercial production and distribution. Study cases from its application to the field of laryngology and speech therapy are given and discussed.
Resumo:
This article describes the simulation and characterization of an ultrasonic transducer using a new material called Rexolite to be used as a matching element. This transducer was simulated using a commercial piezoelectric ceramic PIC255 at 8 MHz. Rexolite, the new material, presents an excellent acoustic matching, specially in terms of the acoustic impedance of water. Finite elements simulations were used in this work. Rexolite was considered as a suitable material in the construction of the transducer due to its malleability and acoustic properties, to validate the simulations a prototype transducer was constructed. Experimental measurements were used to determine the resonance frequency of the prototype transducer. Simulated and experimental results were very similar showing that Rexolite may be an excellent matching, particularly for medical applications.
Resumo:
Virtual reality (VR) techniques to understand and obtain conclusions of data in an easy way are being used by the scientific community. However, these techniques are not used frequently for analyzing large amounts of data in life sciences, particularly in genomics, due to the high complexity of data (curse of dimensionality). Nevertheless, new approaches that allow to bring out the real important data characteristics, arise the possibility of constructing VR spaces to visually understand the intrinsic nature of data. It is well known the benefits of representing high dimensional data in tridimensional spaces by means of dimensionality reduction and transformation techniques, complemented with a strong component of interaction methods. Thus, a novel framework, designed for helping to visualize and interact with data about diseases, is presented. In this paper, the framework is applied to the Van't Veer breast cancer dataset is used, while oncologists from La Paz Hospital (Madrid) are interacting with the obtained results. That is to say a first attempt to generate a visually tangible model of breast cancer disease in order to support the experience of oncologists is presented.