5 resultados para Medical Field
em Universidad Politécnica de Madrid
Resumo:
La termografía infrarroja (TI) es una técnica no invasiva y de bajo coste que permite, con el simple acto de tomar una fotografía, el registro sin contacto de la energía que irradia el cuerpo humano (Akimov & Son’kin, 2011, Merla et al., 2005, Ng et al., 2009, Costello et al., 2012, Hildebrandt et al., 2010). Esta técnica comenzó a utilizarse en el ámbito médico en los años 60, pero debido a los malos resultados como herramienta diagnóstica y la falta de protocolos estandarizados (Head & Elliot, 2002), ésta se dejó de utilizar en detrimento de otras técnicas más precisas a nivel diagnóstico. No obstante, las mejoras tecnológicas de la TI en los últimos años han hecho posible un resurgimiento de la misma (Jiang et al., 2005, Vainer et al., 2005, Cheng et al., 2009, Spalding et al., 2011, Skala et al., 2012), abriendo el camino a nuevas aplicaciones no sólo centradas en el uso diagnóstico. Entre las nuevas aplicaciones, destacamos las que se desarrollan en el ámbito de la actividad física y el deporte, donde recientemente se ha demostrado que los nuevos avances con imágenes de alta resolución pueden proporcionar información muy interesante sobre el complejo sistema de termorregulación humana (Hildebrandt et al., 2010). Entre las nuevas aplicaciones destacan: la cuantificación de la asimilación de la carga de trabajo físico (Čoh & Širok, 2007), la valoración de la condición física (Chudecka et al., 2010, 2012, Akimov et al., 2009, 2011, Merla et al., 2010), la prevención y seguimiento de lesiones (Hildebrandt et al., 2010, 2012, Badža et al., 2012, Gómez Carmona, 2012) e incluso la detección de agujetas (Al-Nakhli et al., 2012). Bajo estas circunstancias, se acusa cada vez más la necesidad de ampliar el conocimiento sobre los factores que influyen en la aplicación de la TI en los seres humanos, así como la descripción de la respuesta de la temperatura de la piel (TP) en condiciones normales, y bajo la influencia de los diferentes tipos de ejercicio. Por consiguiente, este estudio presenta en una primera parte una revisión bibliográfica sobre los factores que afectan al uso de la TI en los seres humanos y una propuesta de clasificación de los mismos. Hemos analizado la fiabilidad del software Termotracker, así como su reproducibilidad de la temperatura de la piel en sujetos jóvenes, sanos y con normopeso. Finalmente, se analizó la respuesta térmica de la piel antes de un entrenamiento de resistencia, velocidad y fuerza, inmediatamente después y durante un período de recuperación de 8 horas. En cuanto a la revisión bibliográfica, hemos propuesto una clasificación para organizar los factores en tres grupos principales: los factores ambientales, individuales y técnicos. El análisis y descripción de estas influencias deben representar la base de nuevas investigaciones con el fin de utilizar la TI en las mejores condiciones. En cuanto a la reproducibilidad, los resultados mostraron valores excelentes para imágenes consecutivas, aunque la reproducibilidad de la TP disminuyó ligeramente con imágenes separadas por 24 horas, sobre todo en las zonas con valores más fríos (es decir, zonas distales y articulaciones). Las asimetrías térmicas (que normalmente se utilizan para seguir la evolución de zonas sobrecargadas o lesionadas) también mostraron excelentes resultados pero, en este caso, con mejores valores para las articulaciones y el zonas centrales (es decir, rodillas, tobillos, dorsales y pectorales) que las Zonas de Interés (ZDI) con valores medios más calientes (como los muslos e isquiotibiales). Los resultados de fiabilidad del software Termotracker fueron excelentes en todas las condiciones y parámetros. En el caso del estudio sobre los efectos de los entrenamientos de la velocidad resistencia y fuerza en la TP, los resultados muestran respuestas específicas según el tipo de entrenamiento, zona de interés, el momento de la evaluación y la función de las zonas analizadas. Los resultados mostraron que la mayoría de las ZDI musculares se mantuvieron significativamente más calientes 8 horas después del entrenamiento, lo que indica que el efecto del ejercicio sobre la TP perdura por lo menos 8 horas en la mayoría de zonas analizadas. La TI podría ser útil para cuantificar la asimilación y recuperación física después de una carga física de trabajo. Estos resultados podrían ser muy útiles para entender mejor el complejo sistema de termorregulación humano, y por lo tanto, para utilizar la TI de una manera más objetiva, precisa y profesional con visos a mejorar las nuevas aplicaciones termográficas en el sector de la actividad física y el deporte Infrared Thermography (IRT) is a safe, non-invasive and low-cost technique that allows the rapid and non-contact recording of the irradiated energy released from the body (Akimov & Son’kin, 2011; Merla et al., 2005; Ng et al., 2009; Costello et al., 2012; Hildebrandt et al., 2010). It has been used since the early 1960’s, but due to poor results as diagnostic tool and a lack of methodological standards and quality assurance (Head et al., 2002), it was rejected from the medical field. Nevertheless, the technological improvements of IRT in the last years have made possible a resurgence of this technique (Jiang et al., 2005; Vainer et al., 2005; Cheng et al., 2009; Spalding et al., 2011; Skala et al., 2012), paving the way to new applications not only focused on the diagnose usages. Among the new applications, we highlighted those in physical activity and sport fields, where it has been recently proven that a high resolution thermal images can provide us with interesting information about the complex thermoregulation system of the body (Hildebrandt et al., 2010), information than can be used as: training workload quantification (Čoh & Širok, 2007), fitness and performance conditions (Chudecka et al., 2010, 2012; Akimov et al., 2009, 2011; Merla et al., 2010; Arfaoui et al., 2012), prevention and monitoring of injuries (Hildebrandt et al., 2010, 2012; Badža et al., 2012, Gómez Carmona, 2012) and even detection of Delayed Onset Muscle Soreness – DOMS- (Al-Nakhli et al., 2012). Under this context, there is a relevant necessity to broaden the knowledge about factors influencing the application of IRT on humans, and to better explore and describe the thermal response of Skin Temperature (Tsk) in normal conditions, and under the influence of different types of exercise. Consequently, this study presents a literature review about factors affecting the application of IRT on human beings and a classification proposal about them. We analysed the reliability of the software Termotracker®, and also its reproducibility of Tsk on young, healthy and normal weight subjects. Finally, we examined the Tsk thermal response before an endurance, speed and strength training, immediately after and during an 8-hour recovery period. Concerning the literature review, we proposed a classification to organise the factors into three main groups: environmental, individual and technical factors. Thus, better exploring and describing these influence factors should represent the basis of further investigations in order to use IRT in the best and optimal conditions to improve its accuracy and results. Regarding the reproducibility results, the outcomes showed excellent values for consecutive images, but the reproducibility of Tsk slightly decreased with time, above all in the colder Regions of Interest (ROI) (i.e. distal and joint areas). The side-to-side differences (ΔT) (normally used to follow the evolution of some injured or overloaded ROI) also showed highly accurate results, but in this case with better values for joints and central ROI (i.e. Knee, Ankles, Dorsal and Pectoral) than the hottest muscle ROI (as Thigh or Hamstrings). The reliability results of the IRT software Termotracker® were excellent in all conditions and parameters. In the part of the study about the effects on Tsk of aerobic, speed and strength training, the results of Tsk demonstrated specific responses depending on the type of training, ROI, moment of the assessment and the function of the considered ROI. The results showed that most of muscular ROI maintained warmer significant Tsk 8 hours after the training, indicating that the effect of exercise on Tsk last at least 8 hours in most of ROI, as well as IRT could help to quantify the recovery status of the athlete as workload assimilation indicator. Those results could be very useful to better understand the complex skin thermoregulation behaviour, and therefore, to use IRT in a more objective, accurate and professional way to improve the new IRT applications for the physical activity and sport sector.
Resumo:
El análisis de imágenes hiperespectrales permite obtener información con una gran resolución espectral: cientos de bandas repartidas desde el espectro infrarrojo hasta el ultravioleta. El uso de dichas imágenes está teniendo un gran impacto en el campo de la medicina y, en concreto, destaca su utilización en la detección de distintos tipos de cáncer. Dentro de este campo, uno de los principales problemas que existen actualmente es el análisis de dichas imágenes en tiempo real ya que, debido al gran volumen de datos que componen estas imágenes, la capacidad de cómputo requerida es muy elevada. Una de las principales líneas de investigación acerca de la reducción de dicho tiempo de procesado se basa en la idea de repartir su análisis en diversos núcleos trabajando en paralelo. En relación a esta línea de investigación, en el presente trabajo se desarrolla una librería para el lenguaje RVC – CAL – lenguaje que está especialmente pensado para aplicaciones multimedia y que permite realizar la paralelización de una manera intuitiva – donde se recogen las funciones necesarias para implementar dos de las cuatro fases propias del procesado espectral: reducción dimensional y extracción de endmembers. Cabe mencionar que este trabajo se complementa con el realizado por Raquel Lazcano en su Proyecto Fin de Grado, donde se desarrollan las funciones necesarias para completar las otras dos fases necesarias en la cadena de desmezclado. En concreto, este trabajo se encuentra dividido en varias partes. La primera de ellas expone razonadamente los motivos que han llevado a comenzar este Proyecto Fin de Grado y los objetivos que se pretenden conseguir con él. Tras esto, se hace un amplio estudio del estado del arte actual y, en él, se explican tanto las imágenes hiperespectrales como los medios y las plataformas que servirán para realizar la división en núcleos y detectar las distintas problemáticas con las que nos podamos encontrar al realizar dicha división. Una vez expuesta la base teórica, nos centraremos en la explicación del método seguido para componer la cadena de desmezclado y generar la librería; un punto importante en este apartado es la utilización de librerías especializadas en operaciones matriciales complejas, implementadas en C++. Tras explicar el método utilizado, se exponen los resultados obtenidos primero por etapas y, posteriormente, con la cadena de procesado completa, implementada en uno o varios núcleos. Por último, se aportan una serie de conclusiones obtenidas tras analizar los distintos algoritmos en cuanto a bondad de resultados, tiempos de procesado y consumo de recursos y se proponen una serie de posibles líneas de actuación futuras relacionadas con dichos resultados. ABSTRACT. Hyperspectral imaging allows us to collect high resolution spectral information: hundred of bands covering from infrared to ultraviolet spectrum. These images have had strong repercussions in the medical field; in particular, we must highlight its use in cancer detection. In this field, the main problem we have to deal with is the real time analysis, because these images have a great data volume and they require a high computational power. One of the main research lines that deals with this problem is related with the analysis of these images using several cores working at the same time. According to this investigation line, this document describes the development of a RVC – CAL library – this language has been widely used for working with multimedia applications and allows an optimized system parallelization –, which joins all the functions needed to implement two of the four stages of the hyperspectral imaging processing chain: dimensionality reduction and endmember extraction. This research is complemented with the research conducted by Raquel Lazcano in her Diploma Project, where she studies the other two stages of the processing chain. The document is divided in several chapters. The first of them introduces the motivation of the Diploma Project and the main objectives to achieve. After that, we study the state of the art of some technologies related with this work, like hyperspectral images and the software and hardware that we will use to parallelize the system and to analyze its performance. Once we have exposed the theoretical bases, we will explain the followed methodology to compose the processing chain and to generate the library; one of the most important issues in this chapter is the use of some C++ libraries specialized in complex matrix operations. At this point, we will expose the results obtained in the individual stage analysis and then, the results of the full processing chain implemented in one or several cores. Finally, we will extract some conclusions related with algorithm behavior, time processing and system performance. In the same way, we propose some future research lines according to the results obtained in this document
Resumo:
La relación entre la ingeniería y la medicina cada vez se está haciendo más estrecha, y debido a esto se ha creado una nueva disciplina, la bioingeniería, ámbito en el que se centra el proyecto. Este ámbito cobra gran interés debido al rápido desarrollo de nuevas tecnologías que en particular permiten, facilitan y mejoran la obtención de diagnósticos médicos respecto de los métodos tradicionales. Dentro de la bioingeniería, el campo que está teniendo mayor desarrollo es el de la imagen médica, gracias al cual se pueden obtener imágenes del interior del cuerpo humano con métodos no invasivos y sin necesidad de recurrir a la cirugía. Mediante métodos como la resonancia magnética, rayos X, medicina nuclear o ultrasonidos, se pueden obtener imágenes del cuerpo humano para realizar diagnósticos. Para que esas imágenes puedan ser utilizadas con ese fin hay que realizar un correcto tratamiento de éstas mediante técnicas de procesado digital. En ése ámbito del procesado digital de las imágenes médicas es en el que se ha realizado este proyecto. Gracias al desarrollo del tratamiento digital de imágenes con métodos de extracción de información, mejora de la visualización o resaltado de rasgos de interés de las imágenes, se puede facilitar y mejorar el diagnóstico de los especialistas. Por todo esto en una época en la que se quieren automatizar todos los procesos para mejorar la eficacia del trabajo realizado, el automatizar el procesado de las imágenes para extraer información con mayor facilidad, es muy útil. Actualmente una de las herramientas más potentes en el tratamiento de imágenes médicas es Matlab, gracias a su toolbox de procesado de imágenes. Por ello se eligió este software para el desarrollo de la parte práctica de este proyecto, su potencia y versatilidad simplifican la implementación de algoritmos. Este proyecto se estructura en dos partes. En la primera se realiza una descripción general de las diferentes modalidades de obtención de imágenes médicas y se explican los diferentes usos de cada método, dependiendo del campo de aplicación. Posteriormente se hace una descripción de las técnicas más importantes de procesado de imagen digital que han sido utilizadas en el proyecto. En la segunda parte se desarrollan cuatro aplicaciones en Matlab para ejemplificar el desarrollo de algoritmos de procesado de imágenes médicas. Dichas implementaciones demuestran la aplicación y utilidad de los conceptos explicados anteriormente en la parte teórica, como la segmentación y operaciones de filtrado espacial de la imagen, así como otros conceptos específicos. Las aplicaciones ejemplo desarrolladas han sido: obtención del porcentaje de metástasis de un tejido, diagnóstico de las deformidades de la columna vertebral, obtención de la MTF de una cámara de rayos gamma y medida del área de un fibroadenoma de una ecografía de mama. Por último, para cada una de las aplicaciones se detallará su utilidad en el campo de la imagen médica, los resultados obtenidos y su implementación en una interfaz gráfica para facilitar su uso. ABSTRACT. The relationship between medicine and engineering is becoming closer than ever giving birth to a recently appeared science field: bioengineering. This project is focused on this subject. This recent field is becoming more and more important due to the fast development of new technologies that provide tools to improve disease diagnosis, with regard to traditional procedures. In bioengineering the fastest growing field is medical imaging, in which we can obtain images of the inside of the human body without need of surgery. Nowadays by means of the medical modalities of magnetic resonance, X ray, nuclear medicine or ultrasound, we can obtain images to make a more accurate diagnosis. For those images to be useful within the medical field, they should be processed properly with some digital image processing techniques. It is in this field of digital medical image processing where this project is developed. Thanks to the development of digital image processing providing methods for data collection, improved visualization or data highlighting, diagnosis can be eased and facilitated. In an age where automation of processes is much sought, automated digital image processing to ease data collection is extremely useful. One of the most powerful image processing tools is Matlab, together with its image processing toolbox. That is the reason why that software was chosen to develop the practical algorithms in this project. This final project is divided into two main parts. Firstly, the different modalities for obtaining medical images will be described. The different usages of each method according to the application will also be specified. Afterwards we will give a brief description of the most important image processing tools that have been used in the project. Secondly, four algorithms in Matlab are implemented, to provide practical examples of medical image processing algorithms. This implementation shows the usefulness of the concepts previously explained in the first part, such as: segmentation or spatial filtering. The particular applications examples that have been developed are: calculation of the metastasis percentage of a tissue, diagnosis of spinal deformity, approximation to the MTF of a gamma camera, and measurement of the area of a fibroadenoma in an ultrasound image. Finally, for each of the applications developed, we will detail its usefulness within the medical field, the results obtained, and its implementation in a graphical user interface to ensure ease of use.
Resumo:
El análisis de imágenes hiperespectrales permite obtener información con una gran resolución espectral: cientos de bandas repartidas desde el espectro infrarrojo hasta el ultravioleta. El uso de dichas imágenes está teniendo un gran impacto en el campo de la medicina y, en concreto, destaca su utilización en la detección de distintos tipos de cáncer. Dentro de este campo, uno de los principales problemas que existen actualmente es el análisis de dichas imágenes en tiempo real ya que, debido al gran volumen de datos que componen estas imágenes, la capacidad de cómputo requerida es muy elevada. Una de las principales líneas de investigación acerca de la reducción de dicho tiempo de procesado se basa en la idea de repartir su análisis en diversos núcleos trabajando en paralelo. En relación a esta línea de investigación, en el presente trabajo se desarrolla una librería para el lenguaje RVC – CAL – lenguaje que está especialmente pensado para aplicaciones multimedia y que permite realizar la paralelización de una manera intuitiva – donde se recogen las funciones necesarias para implementar el clasificador conocido como Support Vector Machine – SVM. Cabe mencionar que este trabajo complementa el realizado en [1] y [2] donde se desarrollaron las funciones necesarias para implementar una cadena de procesado que utiliza el método unmixing para procesar la imagen hiperespectral. En concreto, este trabajo se encuentra dividido en varias partes. La primera de ellas expone razonadamente los motivos que han llevado a comenzar este Trabajo de Investigación y los objetivos que se pretenden conseguir con él. Tras esto, se hace un amplio estudio del estado del arte actual y, en él, se explican tanto las imágenes hiperespectrales como sus métodos de procesado y, en concreto, se detallará el método que utiliza el clasificador SVM. Una vez expuesta la base teórica, nos centraremos en la explicación del método seguido para convertir una versión en Matlab del clasificador SVM optimizado para analizar imágenes hiperespectrales; un punto importante en este apartado es que se desarrolla la versión secuencial del algoritmo y se asientan las bases para una futura paralelización del clasificador. Tras explicar el método utilizado, se exponen los resultados obtenidos primero comparando ambas versiones y, posteriormente, analizando por etapas la versión adaptada al lenguaje RVC – CAL. Por último, se aportan una serie de conclusiones obtenidas tras analizar las dos versiones del clasificador SVM en cuanto a bondad de resultados y tiempos de procesado y se proponen una serie de posibles líneas de actuación futuras relacionadas con dichos resultados. ABSTRACT. Hyperspectral imaging allows us to collect high resolution spectral information: hundred of bands covering from infrared to ultraviolet spectrum. These images have had strong repercussions in the medical field; in particular, we must highlight its use in cancer detection. In this field, the main problem we have to deal with is the real time analysis, because these images have a great data volume and they require a high computational power. One of the main research lines that deals with this problem is related with the analysis of these images using several cores working at the same time. According to this investigation line, this document describes the development of a RVC – CAL library – this language has been widely used for working with multimedia applications and allows an optimized system parallelization –, which joins all the functions needed to implement the Support Vector Machine – SVM - classifier. This research complements the research conducted in [1] and [2] where the necessary functions to implement the unmixing method to analyze hyperspectral images were developed. The document is divided in several chapters. The first of them introduces the motivation of the Master Thesis and the main objectives to achieve. After that, we study the state of the art of some technologies related with this work, like hyperspectral images, their processing methods and, concretely, the SVM classifier. Once we have exposed the theoretical bases, we will explain the followed methodology to translate a Matlab version of the SVM classifier optimized to process an hyperspectral image to RVC – CAL language; one of the most important issues in this chapter is that a sequential implementation is developed and the bases of a future parallelization of the SVM classifier are set. At this point, we will expose the results obtained in the comparative between versions and then, the results of the different steps that compose the SVM in its RVC – CAL version. Finally, we will extract some conclusions related with algorithm behavior and time processing. In the same way, we propose some future research lines according to the results obtained in this document.
Resumo:
Background. Over the last years, the number of available informatics resources in medicine has grown exponentially. While specific inventories of such resources have already begun to be developed for Bioinformatics (BI), comparable inventories are as yet not available for Medical Informatics (MI) field, so that locating and accessing them currently remains a hard and time-consuming task. Description. We have created a repository of MI resources from the scientific literature, providing free access to its contents through a web-based service. Relevant information describing the resources is automatically extracted from manuscripts published in top-ranked MI journals. We used a pattern matching approach to detect the resources? names and their main features. Detected resources are classified according to three different criteria: functionality, resource type and domain. To facilitate these tasks, we have built three different taxonomies by following a novel approach based on folksonomies and social tagging. We adopted the terminology most frequently used by MI researchers in their publications to create the concepts and hierarchical relationships belonging to the taxonomies. The classification algorithm identifies the categories associated to resources and annotates them accordingly. The database is then populated with this data after manual curation and validation. Conclusions. We have created an online repository of MI resources to assist researchers in locating and accessing the most suitable resources to perform specific tasks. The database contained 282 resources at the time of writing. We are continuing to expand the number of available resources by taking into account further publications as well as suggestions from users and resource developers.