6 resultados para Mechatronics

em Universidad Politécnica de Madrid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we describe our research on bio-inspired locomotion systems using deformable structures and smart materials, concretely shape memory alloys (SMAs). These types of materials allow us to explore the possibility of building motor-less and gear-less robots. A swimming underwater fish-like robot has been developed whose movements are generated using SMAs. These actuators are suitable for bending the continuous backbone of the fish, which in turn causes a change in the curvature of the body. This type of structural arrangement is inspired by fish red muscles, which are mainly recruited during steady swimming for the bending of a flexible but nearly incompressible structure such as the fishbone. This paper reviews the design process of these bio-inspired structures, from the motivations and physiological inspiration to the mechatronics design, control and simulations, leading to actual experimental trials and results. The focus of this work is to present the mechanisms by which standard swimming patterns can be reproduced with the proposed design. Moreover, the performance of the SMA-based actuators’ control in terms of actuation speed and position accuracy is also addressed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a GA-based optimization procedure for bioinspired heterogeneous modular multiconfigurable chained microrobots. When constructing heterogeneous chained modular robots that are composed of several different drive modules, one must select the type and position of the modules that form the chain. One must also develop new locomotion gaits that combine the different drive modules. These are two new features of heterogeneous modular robots that they do not share with homogeneous modular robots. This paper presents an offline control system that allows the development of new configuration schemes and locomotion gaits for these heterogeneous modular multiconfigurable chained microrobots. The offline control system is based on a simulator that is specifically designed for chained modular robots and allows them to develop and learn new locomotion patterns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of this work presents the implementation of an experimental platform, which will permit to investigate on a methodology for the design and analysis of a teleoperated system, considering the delay in the communication channel. The project has been developed in partnership with the laboratory of Automatic and Robotics of the Universidad Politécnica de Madrid and the Laboratory at the Centro de Tecnologías Avanzadas de Manufactura at the Pontificia Universidad Católica del Perú. The mechanical structure of the arm that is located in the remote side has been built and the electric servomechanism has been mounted to control their movement. The experimental test of the Teleoperation system has been developed. The PC104 card commands the power interface and sensors of the DC motor of each articulation of the arm. Has developed the drives for the management of the operations of the master and the slave: send/reception of position, speed, acceleration and current data through a CAN network. The programs for the interconnection through a LAN network, between the Windows Operating System and the Real-time Operating System (QNX), has been developed. The utility of the developed platform (hardware and software) has been demonstrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we study the bilateral control of a nonlinear teleoperator system with constant delay, proposes a control strategy by state convergence, which directly connect the local and remote manipulator through feedback signals of position and speed. The control signal allows the remote manipulator follow the local manipulator through the state convergence even if it has a delay in the communication channel. The bilateral control of the teleoperator system considers the case when the human operator applies a constant force on the local manipulator and when the interaction of the remote manipulator with the environment is considered passive. The stability analysis is performed using functional of Lyapunov-Krasovskii, it showed that using a control algorithm by state convergence for the case with constant delay, the nonlinear local and remote teleoperation system is asymptotically stable, also speeds converge to zero and position tracking is achieved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we propose a novel control scheme for bilateral teleoperation of n degree-of-freedom (DOF) nonlinear robotic systems with time-varying communication delay. We consider that the human operator contains a constant force on the local manipulator. The local and remote manipulators are coupled using state convergence control scheme. By choosing a Lyapunov-Krasovskii functional, we show that the local-remote teleoperation system is asymptotically stable. It is also shown that, in the case of reliable communication protocols, the proposed scheme guarantees that the remote manipulator tracks the delayed trajectory of the local manipulator. The time delay of communication channel is assumed to be unknown and randomly time varying, but the upper bounds of the delay interval and the derivative of the delay are assumed to be known.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The field of exoskeletons and wearable devices for walking assistance and rehabilitation has advanced considerably over the past few years. Currently, commercial devices contain joints with stiff actuators that cannot adapt to unpredictable environments. These actuators consume more energy and may not be appropriate for human-machine interactions. Thus, adjustable compliant actuators are being cautiously incorporated into new exoskeletons and active orthoses. Some simulation-based studies have evaluated the benefits of incorporating compliant joints into such devices. Another reason that compliant actuators are desirable is that spasticity and spasmodic movements are common among patients with motor deficiencies; compliant actuators could efficiently absorb these perturbations and improve joint control. In this paper, we provide an overview of the requirements that must be fulfilled by these actuators while evaluating the behavior of leg joints in the locomotion cycle. A brief review of existing compliant actuators is conducted, and our proposed variable stiffness actuator prototype is presented and evaluated. The actuator prototype is implemented in an exoskeleton knee joint operated by a state machine that exploits the dynamics of the leg, resulting in a reduction in actuation energy demand and better adaptability to disturbances.