7 resultados para Mechanisms of reference
em Universidad Politécnica de Madrid
Resumo:
In the present paper the influence of the reference system with regard to the characterization of the surface finishing is analyzed. The effect of the reference system’s choice on the most representative surface finishing parameters (e.g. roughness average Ra and root mean square values Rq) is studied. The study can also be applied to their equivalent parameters in waviness and primary profiles. Based on ISO and ASME standards, three different types of regression lines (central, mean and orthogonal) are theoretically and experimentally analyzed, identifying the validity and applicability fields of each one depending on profile’s geometry. El presente trabajo realiza un estudio de la influencia que supone la elección del sistema de referencia en la determinación los valores de los parámetros más relevantes empleados en la caracterización del acabado superficial tales como la rugosidad media aritmética Ra o la rugosidad media cuadrática Rq y sus equivalentes en los perfiles de ondulación y completo. Partiendo de la definición establecida por las normas ISO y ASME, se analizan tres tipos de líneas de regresión cuadrática (línea central, línea media y línea ortogonal), delimitando los campos de validez y de aplicación de cada una de ellas en función de la geometría del perfil. Para ello se plantean diversos tipos de perfiles y se desarrolla un estudio teórico y experimental de los mismos.
Resumo:
La prevalencia de las alergias está aumentando desde mediados del siglo XX, y se estima que actualmente afectan a alrededor del 2-8 % de la población, pero las causas de este aumento aún no están claras. Encontrar el origen del mecanismo por el cual una proteína inofensiva se convierte en capaz de inducir una respuesta alérgica es de vital importancia para prevenir y tratar estas enfermedades. Aunque la caracterización de alérgenos relevantes ha ayudado a mejorar el manejo clínico y a aclarar los mecanismos básicos de las reacciones alérgicas, todavía queda un largo camino para establecer el origen de la alergenicidad y reactividad cruzada. El objetivo de esta tesis ha sido caracterizar las bases moleculares de la alergenicidad tomando como modelo dos familias de panalergenos (proteínas de transferencia de lípidos –LTPs- y taumatinas –TLPs-) y estudiando los mecanismos que median la sensibilización y la reactividad cruzada para mejorar tanto el diagnóstico como el tratamiento de la alergia. Para ello, se llevaron a cabo dos estrategias: estudiar la reactividad cruzada de miembros de familias de panalérgenos; y estudiar moléculas-co-adyuvantes que pudieran favorecer la capacidad alergénica de dichas proteínas. Para estudiar la reactividad cruzada entre miembros de la misma familia de proteínas, se seleccionaron LTPs y TLPs, descritas como alergenos, tomando como modelo la alergia a frutas. Por otra parte, se estudiaron los perfiles de sensibilización a alérgenos de trigo relacionados con el asma del panadero, la enfermedad ocupacional más relevante de origen alérgico. Estos estudios se llevaron a cabo estandarizando ensayos tipo microarrays con alérgenos y analizando los resultados por la teoría de grafos. En relación al estudiar moléculas-co-adyuvantes que pudieran favorecer la capacidad alergénica de dichas proteínas, se llevaron a cabo estudios sobre la interacción de los alérgenos alimentarios con células del sistema inmune humano y murino y el epitelio de las mucosas, analizando la importancia de moléculas co-transportadas con los alérgenos en el desarrollo de una respuesta Th2. Para ello, Pru p 3(LTP y alérgeno principal del melocotón) se selección como modelo para llevarlo a cabo. Por otra parte, se analizó el papel de moléculas activadoras del sistema inmune producidas por patógenos en la inducción de alergias alimentarias seleccionando el modelo kiwi-alternaria, y el papel de Alt a 1, alérgeno mayor de dicho hongo, en la sensibilización a Act d 2, alérgeno mayor de kiwi. En resumen, el presente trabajo presenta una investigación innovadora aportando resultados de gran utilidad tanto para la mejora del diagnóstico como para nuevas investigaciones sobre la alergia y el esclarecimiento final de los mecanismos que caracterizan esta enfermedad. ABSTRACT Allergies are increasing their prevalence from mid twentieth century, and they are currently estimated to affect around 2-8% of the population but the underlying causes of this increase remain still elusive. The understanding of the mechanism by which a harmless protein becomes capable of inducing an allergic response provides us the basis to prevent and treat these diseases. Although the characterization of relevant allergens has led to improved clinical management and has helped to clarify the basic mechanisms of allergic reactions, it seems justified in aspiring to molecularly dissecting these allergens to establish the structural basis of their allergenicity and cross-reactivity. The aim of this thesis was to characterize the molecular basis of the allergenicity of model proteins belonging to different families (Lipid Transfer Proteins –LTPs-, and Thaumatin-like Proteins –TLPs-) in order to identify mechanisms that mediate sensitization and cross reactivity for developing new strategies in the management of allergy, both diagnosis and treatment, in the near future. With this purpose, two strategies have been conducted: studies of cross-reactivity among panallergen families and molecular studies of the contribution of cofactors in the induction of the allergic response by these panallergens. Following the first strategy, we studied the cross-reactivity among members of two plant panallergens (LTPs , Lipid Transfer Proteins , and TLPs , Thaumatin-like Proteins) using the peach allergy as a model. Similarly, we characterized the sensitization profiles to wheat allergens in baker's asthma development, the most relevant occupational disease. These studies were performed using allergen microarrays and the graph theory for analyzing the results. Regarding the second approach, we analyzed the interaction of plant allergens with immune and epithelial cells. To perform these studies , we examined the importance of ligands and co-transported molecules of plant allergens in the development of Th2 responses. To this end, Pru p 3, nsLTP (non-specific Lipid Transfer Protein) and peach major allergen, was selected as a model to investigate its interaction with cells of the human and murine immune systems as well as with the intestinal epithelium and the contribution of its ligand in inducing an allergic response was studied. Moreover, we analyzed the role of pathogen associated molecules in the induction of food allergy. For that, we selected the kiwi- alternaria system as a model and the role of Alt a 1 , major allergen of the fungus, in the development of Act d 2-sensitization was studied. In summary, this work presents an innovative research providing useful results for improving diagnosis and leading to further research on allergy and the final clarification of the mechanisms that characterize this disease.
Resumo:
The effect of the applied stress on the deformation and crack nucleation and propagation mechanisms of a c-TiAl intermetallic alloy (Ti-45Al-2Nb-2Mn (at. pct)-0.8 vol. pct TiB2) was examined by means of in situ tensile (constant strain rate) and tensile-creep (constant load) experiments performed at 973 K (700 �C) using a scanning electron microscope. Colony boundary cracking developed during the secondary stage in creep tests at 300 and 400 MPa and during the tertiary stage of the creep tests performed at higher stresses. Colony boundary cracking was also observed in the constant strain rate tensile test. Interlamellar ledges were only found during the tensile-creep tests at high stresses (r>400 MPa) and during the constant strain rate tensile test. Quantitative measurements of the nature of the crack propagation path along secondary cracks and along the primary crack indicated that colony boundaries were preferential sites for crack propagation under all the conditions investigated. The frequency of interlamellar cracking increased with stress, but this fracture mechanism was always of secondary importance. Translamellar cracking was only observed along the primary crack.
Resumo:
Delamination reduces the strenght of the composites, mainly in compression. Several methods exist to overcome this problem, but they are either not feasible for large scale production or too expensive. 3D composites are a promising solution.
Resumo:
The analysis of the interaction between Arabidopsis thaliana and adapted (PcBMM) and nonadapted (Pc2127) isolates of the necrotrophic fungus Plectosphaerella cucumerina has contributed to the identification of molecular mechanisms controlling plant resistance to necrotrophs.To characterize the pathogenicity bases of the virulence of necrotrophic fungi in Arabidopsis, we developed P. cucumerina functional genomics tools using Agrobacterium tumefaciens-mediated transformation.We generated PcBMM-GFP and Pc2127-GFP transformants constitutively expressing the green fluorescence protein (GFP), and a collection of random T-DNA insertional PcBMM transformants. Confocal microscopy analyses of the initial stages of PcBMM-GFP infection revealed that this pathogen, like other necrotrophic fungi, does not form an appressorium or penetrate into plant cells, but causes successive degradation of leaf cell layers
Resumo:
The recognition of an increasing and worldwide demand for high quality in fruits and vegetables has grown in recent years. Evidence of severe problems of mechanical damage is increasing, and this is affecting the trade of fruits in European and other countries. The potential market for fresh high-quality vegetables and fruits remains restricted by the lack of quality of the majority of products that reach consumers; this is the case for local as well as import/export markets, so a reduction in the consumption of fresh fruits in favour of other fixed-quality products (dairy in particular) may become widespread. In a recent survey (King, 1988, cited in Bellon, 1989), it appears that, for the moment, one third of the surveyed consumers are still continuing to increase their fresh produce consumption. The factors that appear as being most important in influencing the shopping behaviour of these consumers are taste/flavour, freshness/ripeness, appealing look, and cleanliness. Research on mechanical damage in fruit and vegetables has been underway for several years. The first research made on physical properties of fruits was in fact directed towards analysing the response to slow or rapid loading of selected fruits (Fridley et al, 1968; Horsefield et al., 1972). From that time on, research has expanded greatly, and different aspects of the problem have been approached. These include applicable mechanical models for the contact problem, the response of biological tissues to loading, devices for detecting damage causes in machines and equipment, and procedures for sensing bruises in grading and sorting. This chapter will be devoted to the study of actual research results relative to the cause and mechanisms of mechanical damage in fruits (secondarily in vegetables), the development of bruises in these commodities, the models that have been used up to now, and the different factors which have been recognized as influencing the appearance and development of mechanical damage in fruits. The study will be focused mainly on contact-damage - that is, slow or rapid loads applied to the surface of the products and causing bruises. (A bruise is defined as an altered volume of fruit tissues below the skin that is discoloured and softened.) Other types of mechanical damage, like abrasion and scuffing, punctures and cuts, will be also mentioned briefly.
Resumo:
Recent findings on the importance of losses due to damage incidence, on causes and on mechanisms of damage in fruits are reviewed and discussed. Incidence of damage in different fruits in some European markets has been -proved to be very high. Structure of fruit flesh and skin (hystology) is of foremost importance in the response of fruits to impacts and to compression. Continuous variation of fruit compositional and structural characteristics during maturation has to be taken into consideration when studying damage susceptibility.