47 resultados para Mechanical Properties - Yield Phenomena

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-length ultrafine-grained (UFG) Ti rods are produced by equal-channel angular pressing via the conform scheme (ECAP-C) at 200 °C, which is followed by drawing at 200 °C. The evolution of microstructure, macrotexture, and mechanical properties (yield strength, ultimate tensile strength, failure stress, uniform elongation, elongation to failure) of pure Ti during this thermo-mechanical processing is studied. Special attention is also paid to the effect of microstructure on the mechanical behavior of the material after macrolocalization of plastic flow. The number of ECAP-C passes varies in the range of 1–10. The microstructure is more refined with increasing number of ECAP-C passes. Formation of homogeneous microstructure with a grain/subgrain size of 200 nm and its saturation after 6 ECAP-C passes are observed. Strength properties increase with increasing number of ECAP passes and saturate after 6 ECAP-C passes to a yield strength of 973 MPa, an ultimate tensile strength of 1035 MPa, and a true failure stress of 1400 MPa (from 625, 750, and 1150 MPa in the as-received condition). The true strain at failure failure decreases after ECAP-C processing. The reduction of area and true strain to failure values do not decrease after ECAP-C processing. The sample after 6 ECAP-C passes is subjected to drawing at 200¯C resulting in reduction of a grain/subgrain size to 150 nm, formation of (10 View the MathML source1¯0) fiber texture with respect to the rod axis, and further increase of the yield strength up to 1190 MPa, the ultimate tensile strength up to 1230 MPa and the true failure stress up to 1600 MPa. It is demonstrated that UFG CP Ti has low resistance to macrolocalization of plastic deformation and high resistance to crack formation after necking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this research the mechanical behaviour of pure tungsten (W) and its alloys (2 wt.% Ti–0.47 wt.% Y2O3 and 4 wt.% Ti–0.5 wt.% Y2O3) is compared. These tungsten alloys, have been obtained by powder metallurgy. The yield strength, fracture toughness and elastic modulus have been studied in the temperature interval of 25 °C to 1000 °C. The results have shown that the addition of Ti substantially improves the bending strength and toughness of W, but it also dramatically increases the DBTT. On the other hand, the addition of 0.5% Y2O3, is enough to improve noticeably the oxidation behaviour at the higher temperatures. The grain size, fractography and microstructure are studied in these materials. Titanium is a good grain growth inhibitor and effective precursor of liquid phase in HIP. The simultaneous presence of Y2O3 and Ti permits to obtain materials with low pores presence

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Discrete element method (DEM) is a numerical technique widely used for simulating the mechanical behavior of granular materials involved in many food and agricultural industry processes. Additionally, this technique is also a powerful tool to understand many complex phenomena related to the mechanics of granular materials. However, to make use of the potential of this technique it is necessary to develop DEM models capable of representing accurately the reality. For that, among some other questions, it is essential that the values of the microscopic material properties used to define the numerical model are accurately determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel methodology based on instrumented indentation is developed to determine the mechanical properties of amorphous materials which present cohesive-frictional behaviour. The approach is based on the concept of a universal hardness equation, which results from the assumption of a characteristic indentation pressure proportional to the hardness. The actual universal hardness equation is obtained from a detailed finite element analysis of the process of sharp indentation for a very wide range of material properties, and the inverse problem (i.e. how to extract the elastic modulus, the compressive yield strength and the friction angle) from instrumented indentation is solved. The applicability and limitations of the novel approach are highlighted. Finally, the model is validated against experimental data in metallic and ceramic glasses as well as polymers, covering a wide range of amorphous materials in terms of elastic modulus, yield strength and friction angle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Assessment of laser shock processing effects on mechanical resistance of thin dissimilar laser welded joints

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The physical and mechanical properties of metal matrix composites were improved by the addition of reinforcements. The mechanical properties of particulate-reinforced metal-matrix composites based on aluminium alloys (6061 and 7015) at high temperatures were studied. Titanium diboride (TiB2) particles were used as the reinforcement. All the composites were produced by hot extrusion. The tensile properties and fracture characteristics of these materials were investigated at room temperature and at high temperatures to determine their ultimate strength and strain to failure. The fracture surface was analysed by scanning electron microscopy. TiB2 particles provide high stability of the aluminium alloys (6061 and 7015) in the fabrication process. An improvement in the mechanical behaviour was achieved by adding TiB2 particles as reinforcement in both the aluminium alloys. Adding TiB2 particles reduces the ductility of the aluminium alloys but does not change the microscopic mode of failure, and the fracture surface exhibits a ductile appearance with dimples formed by coalescence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los efectos de la corrosión sobre las armaduras se manifiestan por la pérdida de sección y la variación de las propiedades mecánicas relacionadas con la ductilidad. En este trabajo se han ensayado a tracción 96 barras de acero B500SD que previamente se han sometido a niveles variables de corrosión. Los resultados muestran que los alargamientos de las barras disminuyen y el cociente entre la tensión máxima y el límite elástico aumenta conforme el nivel de corrosión avanza. A partir del estudio del efecto de entalla y de la distinta constitución metalográfica del acero a nivel de sección debido a su procedimiento de fabricación se pueden explicar los fenómenos anteriores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study includes an analysis of the applicability of current models used for estimating the mechanical properties of conventional concrete to self-compacting concrete. The mechanical properties evaluated are: modulus of elasticity, tensile strength, and modulus of rupture. An extensive database which included the dosifications and the mechanical properties of 627 mixtures from 138 different references, was used. The models considered are: ACI, EC-2, NZS 3101:2006 (New Zealand code) and the CSA A23.3-04 (Canadian code). The precision in estimating the modulus of elasticity and tensile strength is acceptable for all models; however, all models are less precise in estimating the modulus of rupture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Las gemas se evalúan mediante la norma de clasificación visual (UNE 56544), pero su aplicación en estructuras existentes y grandes escuadrías resulta poco eficaz y conduce a estimaciones demasiado conservadoras. Este trabajo analiza la influencia de las gemas comparando la resistencia de piezas con gemas y piezas correctamente escuadradas. Se han analizado 218 piezas de pino silvestre con dimensiones nominales 150 x 200 x 4.200 mm, de las que 102 presentaban una gema completa a lo largo de toda su longitud y el resto estaban correctamente escuadradas. En las piezas con gema se ha medido la altura de la sección cada 30 cm (altura en cada cara y altura máxima). Para determinar la resistencia se han ensayado todas las piezas de acuerdo a la norma EN 408. Se ha comparado la resistencia obtenida para las piezas con gema, diferenciando si la gema se encuentra en el borde comprimido o en el borde traccionado, con las piezas escuadradas. Puede concluirse que la presencia de gemas disminuye la resistencia excepto si la gema se encuentra en el borde traccionado, en cuyo caso los resultados obtenidos han sido similares a los de las piezas escuadradas. The wanes on structural timber are evaluated according to the visual grading standard (UNE 56544), but its application on existing structures and large cross sections is ineffective and leads to conservative estimations. This paper analyzes the influence of the wanes by comparing the resistance of pieces with wanes and square pieces. 218 pieces of Scotch pine with nominal dimensions 150 x 200 x 4200 mm have been analyzed, 102 of them had a complete wane along its length and the rest were properly squared. The height of the cross section was measured every 30 cm (the height on each side and the maximum height) for the pieces with wane. The bending strength of all the pieces was obtained according to the EN 408 standard. The bending strength of the pieces with wane has been compared with the strength of the squared pieces, taking into account if the wane is positioned on the compressed edge or on the tensioned edge. It can be concluded that the bending strength of the pieces with wanes is lower than the one of squared pieces, except if the wanes are on the tensioned edge of the beam.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of three different aging methods (immersion in hot water, freeze–thaw cycles and wet–dry cycles) on the mechanical properties of GRC were studied and compared. Test results showed that immersion in hot water may be an unreliable method for modified GRC formulations, with it being in probability a very harmful procedure. A new aging method, mixing freeze–thaw cycles and wet–dry cycles, seems to be the most accurate simulation of weather conditions that produce a noticeable change in GRC mechanical properties. Future work should be carried out to find a correlation between real weather and the proposed aging method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, the electronic industry demands small and complex parts as a consequence of the miniaturization of electronic devices. Powder injection moulding (PIM) is an emerging technique for the manufacturing of magnetic ceramics. In this paper, we analyze the sintering process, between 900 °C and 1300 °C, of Ni–Zn ferrites prepared by PIM. In particular, the densification behaviour, microstructure and mechanical properties of samples with toroidal and bar geometry were analyzed at different temperatures. Additionally, the magnetic behaviour (complex permeability and magnetic losses factor) of these compacts was compared with that of samples prepared by conventional powder compaction. Finally, the mechanical behaviour (elastic modulus, flexure strength and fracture toughness) was analyzed as a function of the powder loading of feedstock. The final microstructure of prepared samples was correlated with the macroscopic behaviour. A good agreement was established between the densities and population of defects found in the materials depending on the sintering conditions. In general, the final mechanical and magnetic properties of PIM samples were enhanced relative those obtained by uniaxial compaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El principal objetivo de este estudio es evaluar la influencia de las fendas de secado en las propiedades mecánicas de vigas de madera. Para esto, se utilizan 40 vigas de Pino silvestre (Pinus sylvestris L) de 4200 mm de longitud y 150x200 mm de sección que fueron ensayadas según norma EN 408. Las fendas se registran detalladamente atendiendo a su longitud y posición en cada cara de la viga, y midiendo el espesor y la profundidad cada 100mm a lo largo de la viga. Solo el 10% de la muestra es rechazada por las fendas, según los criterios establecidos por la norma española de clasificación visual UNE 56544. Para evaluar la influencia de las fendas en las propiedades mecánicas, se usan tres parámetros globales basados en el área, el volumen o la profundad de la fenda, y dos locales basados en la profundidad máxima y la profundidad en la zona de rotura. Además se determina la densidad de las piezas. Estos parámetros se comparan con las propiedades mecánicas (tensión de rotura, módulo de elasticidad y energía de rotura) y se encuentra escasa relación entre ellos. Las mejores correlaciones se encuentran entre los parámetros relacionados con la profundidad de las fendas, tanto con el módulo de elasticidad como con la tensión de rotura. The aim of this study is the evaluation of the influence of drying fissures on the mechanical properties of timber beams. For that purpose, 40 sawn timber pieces of Scots pine (Pinus sylvestris L.) with 150x200 mm in cross-section and 4200 mm in length have been tested according to EN 408, obtaining MOR and MOE. The fissures were registered in detail measuring their length and position in each face of the beam, and the thickness and depth every 100 mm in length. Only 10 % of the pieces were rejected because fissures, according to UNE 56544 Spanish visual grading standard. To evaluate the influence of fissures in mechanical properties three global parameters: Fissures Area Ratio or ratio between the area occupied by fissures and the total area in the neutral axis plane of the beam; Fissures Volume Ratio or ratio between volume of fissures and the total volume of the beam; Fissures Average Depth and two local parameters were used: Fissures Maximum Depth in the beam, and Fissures Depth in the broken zone of the beam. Also the density of the beams was registered. These parameters were compared with mechanical properties (tensile strength, elasticity modulus, and rupture energy) and the relationship between them had not been founded. The best relationship was founded between the elasticity modulus y the tensile strength with the parameters which included the depth of the fissures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presented study is related to the EU 7 th Framework Programme CODICE (COmputationally Driven design of Innovative CEment-based materials). The main aim of the project is the development of a multi-scale model for the computer based simulation of mechanical and durability performance of cementitious materials. This paper reports results of micro/nano scale characterisation and mechanical property mapping of cementitious skeletons formed by the cement hydration at different ages. Using the statistical nanoindentation and micro-mechanical property mapping technique, intrinsic properties of different hydrate phases, and also the possible interaction (or overlapping) of different phases (e.g. calcium-silcate-hydrates) has been studied. Results of the mapping and statistical indentation testing appear to suggest the possible existence of more hydrate phases than the commonly reported LD and HD C-S-H and CH phases

Relevância:

100.00% 100.00%

Publicador:

Resumo:

EWT back contact solar cells are manufactured from very thin silicon wafers. These wafers are drilled by means of a laser process creating a matrix of tiny holes with a density of approximately 125 holes per square centimeter. Their influence in the stiffness and mechanical strength has been studied. To this end, both wafers with and without holes have been tested with the ring on ring test. Numerical simulations of the tests have been carried out through the Finite Element Method taking into account the non-linearities present in the tests. It's shown that one may use coarse meshes without holes to simulate the test and after that sub models are used for the estimation of the stress concentration around the holes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quasi-monocrystalline silicon wafers have appeared as a critical innovation in the PV industry, joining the most favourable characteristics of the conventional substrates: the higher solar cell efficiencies of monocrystalline Czochralski-Si (Cz-Si) wafers and the lower cost and the full square-shape of the multicrystalline ones. However, the quasi-mono ingot growth can lead to a different defect structure than the typical Cz-Si process. Thus, the properties of the brand-new quasi-mono wafers, from a mechanical point of view, have been for the first time studied, comparing their strength with that of both Cz-Si mono and typical multicrystalline materials. The study has been carried out employing the four line bending test and simulating them by means of FE models. For the analysis, failure stresses were fitted to a three-parameter Weibull distribution. High mechanical strength was found in all the cases. The low quality quasi-mono wafers, interestingly, did not exhibit critical strength values for the PV industry, despite their noticeable density of extended defects.