6 resultados para Maximal lactate steady state
em Universidad Politécnica de Madrid
Resumo:
The use of 3-D fundamental solution is some axisymmetric problems is straightforward. The resulting algorithms seem to work better than the usual ones (at least for static solutions) and for dynamic cases, than those presented in the previous paragraph. The robustness of the method allows the computations for very high and very low frequencies without any noticeable difficulty.
Resumo:
The study of the performance of an innovative receiver for linear Fresnel reflectors is carried out in this paper, and the results are analyzed with a physics perspective of the process. The receiver consists of a bundle of tubes parallel to the mirror arrays, resulting on a smaller cross section for the same receiver width as the number of tubes increases, due to the diminution of their diameter. This implies higher heat carrier fluid speeds, and thus, a more effective heat transfer process, although it conveys higher pumping power as well. Mass flow is optimized for different tubes diameters, different impinging radiation intensities and different fluid inlet temperatures. It is found that the best receiver design, namely the tubes diameter that maximizes the exergetic efficiency for given working conditions, is similar for the cases studied. There is a range of tubes diameters that imply similar efficiencies, which can drive to capital cost reduction thanks to the flexibility of design. In addition, the length of the receiver is also optimized, and it is observed that the optimal length is similar for the working conditions considered. As a result of this study, it is found that this innovative receiver provides an optimum design for the whole day, even though impinging radiation intensity varies notably. Thermal features of this type of receiver could be the base of a new generation of concentrated solar power plants with a great potential for cost reduction, because of the simplicity of the system and the lower weigh of the components, plus the flexibility of using the receiver tubes for different streams of the heat carrier fluid.
Resumo:
Radiative shock waves play a pivotal role in the transport energy into the stellar medium. This fact has led to many efforts to scale the astrophysical phenomena to accessible laboratory conditions and their study has been highlighted as an area requiring further experimental investigations. Low density material with high atomic mass is suitable to achieve radiative regime, and, therefore, low density xenon gas is commonly used for the medium in which the radiative shocks such as radiative blast waves propagate. In this work, by means of collisional-radiative steady-state calculations, a characterization and an analysis of microscopic magnitudes of laboratory blast waves launched in xenon clusters are made. Thus, for example, the average ionization, the charge state distribution, the cooling time or photon mean free paths are studied. Furthermore, for a particular experiment, the effects of the self-absorption and self-emission in the specific intensity emitted by the shock front and that is going through the radiative precursor are investigated. Finally, for that experiment, since the electron temperature is not measured experimentally, an estimation of this magnitude is made both for the shock shell and the radiative precursor.
Resumo:
This paper presents the theoretical analysis of a storage integrated solar thermophotovoltaic (SISTPV) system operating in steady state. These systems combine thermophotovoltaic (TPV) technology and high temperature thermal storage phase-change materials (PCM) in the same unit, providing a great potential in terms of efficiency, cost reduction and storage energy density. The main attraction in the proposed system is its simplicity and modularity compared to conventional Concentrated Solar Power (CSP) technologies. This is mainly due to the absence of moving parts. In this paper we analyze the use of Silicon as the phase change material (PCM). Silicon is an excellent candidate because of its high melting point (1680 K) and its very high latent heat of fusion of 1800 kJ/kg, which is about ten times greater than the conventional PCMs like molten salts. For a simple system configuration, we have demonstrated that overall conversion efficiencies up to ?35% are approachable. Although higher efficiencies are expected by incorporating more advanced devices like multijunction TPV cells, narrow band selective emitters or adopting near-field TPV configurations as well as by enhancing the convective/conductive heat transfer within the PCM. In this paper, we also discuss about the optimum system configurations and provide the general guidelines for designing these systems. Preliminary estimates of night time operations indicate it is possible to achieve over 10 h of operation with a relatively small quantity of Silicon.
Resumo:
The measurement deviations of cup anemometers are studied by analyzing the rotational speed of the rotor at steady state (constant wind speed). The differences of the measured rotational speed with respect to the averaged one based on complete turns of the rotor are produced by the harmonic terms of the rotational speed. Cup anemometer sampling periods include a certain number of complete turns of the rotor, plus one incomplete turn, the residuals from the harmonic terms integration within that incomplete turn (as part of the averaging process) being responsible for the mentioned deviations. The errors on the rotational speed due to the harmonic terms are studied analytically and then experimentally, with data from more than 500 calibrations performed on commercial anemometers.
Resumo:
Pulse-width modulation is widely used to control electronic converters. One of the most frequently used topologies for high DC voltage/low DC voltage conversion is the Buck converter. These converters are described by a second order system with an LC filter between the switching subsystem and the load. The use of a coil with an amorphous magnetic material core rather than an air core permits the design of smaller converters. If high switching frequencies are used to obtain high quality voltage output, then the value of the auto inductance L is reduced over time. Robust controllers are thus needed if the accuracy of the converter response must be preserved under auto inductance and payload variations. This paper presents a robust controller for a Buck converter based on a state space feedback control system combined with an additional virtual space variable which minimizes the effects of the inductance and load variations when a switching frequency that is not too high is applied. The system exhibits a null steady-state average error response for the entire range of parameter variations. Simulation results and a comparison with a standard PID controller are also presented.