7 resultados para Matter wave statistics

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an analysis of the space-time dynamics of oceanic sea states exploiting stereo imaging techniques. In particular, a novel Wave Acquisition Stereo System (WASS) has been developed and deployed at the oceanographic tower Acqua Alta in the Northern Adriatic Sea, off the Venice coast in Italy. The analysis of WASS video measurements yields accurate estimates of the oceanic sea state dynamics, the associated directional spectra and wave surface statistics that agree well with theoretical models. Finally, we show that a space-time extreme, defined as the expected largest surface wave height over an area, is considerably larger than the maximum crest observed in time at a point, in agreement with theoretical predictions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stereo video techniques are effective for estimating the space–time wave dynamics over an area of the ocean. Indeed, a stereo camera view allows retrieval of both spatial and temporal data whose statistical content is richer than that of time series data retrieved from point wave probes. We present an application of the Wave Acquisition Stereo System (WASS) for the analysis of offshore video measurements of gravity waves in the Northern Adriatic Sea and near the southern seashore of the Crimean peninsula, in the Black Sea. We use classical epipolar techniques to reconstruct the sea surface from the stereo pairs sequentially in time, viz. a sequence of spatial snapshots. We also present a variational approach that exploits the entire data image set providing a global space–time imaging of the sea surface, viz. simultaneous reconstruction of several spatial snapshots of the surface in order to guarantee continuity of the sea surface both in space and time. Analysis of the WASS measurements show that the sea surface can be accurately estimated in space and time together, yielding associated directional spectra and wave statistics at a point in time that agrees well with probabilistic models. In particular, WASS stereo imaging is able to capture typical features of the wave surface, especially the crest-to-trough asymmetry due to second order nonlinearities, and the observed shape of large waves are fairly described by theoretical models based on the theory of quasi-determinism (Boccotti, 2000). Further, we investigate space–time extremes of the observed stationary sea states, viz. the largest surface wave heights expected over a given area during the sea state duration. The WASS analysis provides the first experimental proof that a space–time extreme is generally larger than that observed in time via point measurements, in agreement with the predictions based on stochastic theories for global maxima of Gaussian fields.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stereo video techniques are effective for estimating the space-time wave dynamics over an area of the ocean. Indeed, a stereo camera view allows retrieval of both spatial and temporal data whose statistical content is richer than that of time series data retrieved from point wave probes. To prove this, we consider an application of the Wave Acquisition Stereo System (WASS) for the analysis of offshore video measurements of gravity waves in the Northern Adriatic Sea. In particular, we deployed WASS at the oceanographic platform Acqua Alta, off the Venice coast, Italy. Three experimental studies were performed, and the overlapping field of view of the acquired stereo images covered an area of approximately 1100 m2. Analysis of the WASS measurements show that the sea surface can be accurately estimated in space and time together, yielding associated directional spectra and wave statistics that agree well with theoretical models. From the observed wavenumber-frequency spectrum one can also predict the vertical profile of the current flow underneath the wave surface. Finally, future improvements of WASS and applications are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The derivative nonlinear Schrodinger DNLS equation, describing propagation of circularly polarized Alfven waves of finite amplitude in a cold plasma, is truncated to explore the coherent, weakly nonlinear, cubic coupling of three waves near resonance, one wave being linearly unstable and the other waves damped. In a reduced three-wave model equal dampings of daughter waves, three-dimensional flow for two wave amplitudes and one relative phase, no matter how small the growth rate of the unstable wave there exists a parametric domain with the flow exhibiting chaotic relaxation oscillations that are absent for zero growth rate. This hard transition in phase-space behavior occurs for left-hand LH polarized waves, paralleling the known fact that only LH time-harmonic solutions of the DNLS equation are modulationally unstable, with damping less than about unstable wave frequency 2/4 x ion cyclotron frequency. The structural stability of the transition was explored by going into a fully 3-wave model different dampings of daughter waves,four-dimensional flow; both models differ in significant phase-space features but keep common features essential for the transition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The derivative nonlinear Schrödinger (DNLS) equation, describing propagation of circularly polarized Alfven waves of finite amplitude in a cold plasma, is truncated to explore the coherent, weakly nonlinear, cubic coupling of three waves near resonance, one wave being linearly unstable and the other waves damped. In a reduced three-wave model (equal damping of daughter waves, three-dimensional flow for two wave amplitudes and one relative phase), no matter how small the growth rate of the unstable wave there exists a parametric domain with the flow exhibiting chaotic dynamics that is absent for zero growth-rate. This hard transition in phase-space behavior occurs for left-hand (LH) polarized waves, paralelling the known fact that only LH time-harmonic solutions of the DNLS equation are modulationally unstable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The derivative nonlinear Schrödinger (DNLS) equation, describing propagation of circularly polarized Alfven waves of finite amplitude in a cold plasma, is truncated to explore the coherent, weakly nonlinear coupling of three waves near resonance, one wave being linearly unstable and the other waves damped. No matter how small the growth rate of the unstable wave, the four-dimensional flow for the three wave amplitudes and a relative phase, with both resistive damping and linear Landau damping, exhibits chaotic relaxation oscillations that are absent for zero growth-rate. This hard transition in phase-space behavior occurs for left-hand (LH) polarized waves, paralleling the known fact that only LH time-harmonic solutions of the DNLS equation are modulationally unstable. The parameter domain developing chaos is much broader than the corresponding domain in a reduced 3-wave model that assumes equal dampings of the daughter waves

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coherent three-wave interaction, with linear growth in the higher frequency wave and damping in the two other waves, is reconsidered; for equal dampings, the resulting three-dimensional (3-D) flow of a relative phase and just two amplitudes behaved chaotically, no matter how small the growth of the unstable wave. The general case of different dampings is studied here to test whether, and how, that hard scenario for chaos is preserved in passing from 3-D to four-dimensional flows. It is found that the wave with higher damping is partially slaved to the other damped wave; this retains a feature of the original problem an invariant surface that meets an unstable fixed point, at zero growth rate! that gave rise to the chaotic attractor and determined its structure, and suggests that the sudden transition to chaos should appear in more complex wave interactions.