6 resultados para Matt Casado
em Universidad Politécnica de Madrid
Resumo:
A kinetic approach is used to develop a theory of electrostatic probes in a fully ionized plasma in the presence of a magnetic field. A consistent asymptotic expansion is obtained assuming that the electron Larmor radius is small compared to the radius of the probe. The order of magnitude of neglected terms is given. It is found that the electric potential within the tube of force defined by the cross section of the probe decays non-mono tonic ally from the probe; this bump disappears at a certain probe voltage and the theory is valid up to this voltage. The transition region, which extends beyond plasma potential, is not exponential. The possible saturation of the electron current is discussed. Restricted numerical results are given; they seem to be useful for weaker magnetic fields down to the zero-field limit. Extensions of the theory a r e considered.
Resumo:
An analysis of the electrostatic plasma instabilities excited by the application of a strong, uniform, alternating electric field is made on the basis of the Vlasov equation. A very general dispersion relation is obtained and discussed. Under the assumption W 2 O » C 2 pi. (where wO is the applied frequency and wpi the ion plasma frequency) a detailed analysis is given for wavelengths of the order of or large compared with the Debye length. It is found that there are two types of instabilities: resonant (or parametric) and nonresonant. The second is caused by the relative streaming of ions and electrons, generated by the field; it seems to exist only if wO is less than the electron plasma frequency wpe. The instability only appears if the field exceeds a certain threshold, which is found.
Resumo:
On the basis of the BBGKY hierarchy of equations an expression is derived for the response of a fully ionized plasma to a strong, high-frequency electric field in the limit of infinite ion mass. It is found that even in this limit the ionion correlation function is substantially affected by the field. The corrections to earlier nonlinear results for the current density appear to be quite ssential. The validity of the model introduced by Dawson and Oberman to study the response to a vanishingly small field is confirmed for larger values of the field when the eorrect expression for the ion-ion correlations i s introduced; the model by itself does not yield such an expression. The results have interest for the heating of the plasma and for the propagation of a strong electromagnetic wave through the plasma. The theory seems to be valid for any field intensity for which the plasma is stable.
Resumo:
En recuerdo de Carlos Fernández Casado
Resumo:
Contestación del académico Excmo. Sr. D. Luis Moya Blanco al discurso leído por el Excmo. Sr. D. Carlos Fernández Casado el día 21 de noviembre de 1976, con motivo de su recepción