14 resultados para Materials testing

em Universidad Politécnica de Madrid


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Based on two research projects, a device for testing the response to-impact of fruits and related materials has been designed and tested during the last three years. As it is not related directly to potatoes, this contribution focuses mainly on the principles of impact and static loading and on the description of the device, and the type of results obtained up to now in different fruits.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Padding materials are commonly used in fruit packing lines with the objective of diminishing impact damage in postharvest handling. Two sensors, instrumented sphere IS 100 and impact tester, have been compared to analyze the performance of six different padding materials used in Spanish fruit packing lines. Padding materials tested have been classified according to their capability to decrease impact intensities inflicted to fruit in packing lines. A procedure to test padding materials has been developed for "Golden" apples. Its basis is a logistic regression to predict bruise probability in fruit. The model combines two kinds of parameters: padding material parameters measured with IS, and fruit properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The International FusionMaterials Irradiation Facility (IFMIF) is a future neutron source based on the D-Li stripping reaction, planned to test candidate fusionmaterials at relevant fusion irradiation conditions. During the design of IFMIF special attention was paid to the structural materials for the blanket and first wall, because they will be exposed to the most severe irradiation conditions in a fusion reactor. Also the irradiation of candidate materials for solid breeder blankets is planned in the IFMIF reference design. This paper focuses on the assessment of the suitability of IFMIF irradiation conditions for testing functionalmaterials to be used in liquid blankets and diagnostics systems, since they are been also considered within IFMIF objectives. The study has been based on the analysis and comparison of the main expected irradiation parameters in IFMIF and DEMO reactor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies the relationship between aging, physical changes and the results of non-destructive testing of plywood. 176 pieces of plywood were tested to analyze their actual and estimated density using non-destructive methods (screw withdrawal force and ultrasound wave velocity) during a laboratory aging test. From the results of statistical analysis it can be concluded that there is a strong relationship between the non-destructive measurements carried out, and the decline in the physical properties of the panels due to aging. The authors propose several models to estimate board density. The best results are obtained with ultrasound. A reliable prediction of the degree of deterioration (aging) of board is presented. Breeder blanket materials have to produce tritium from lithium while fulfilling several strict conditions. In particular, when dealing with materials to be applied in fusion reactors, one of the key questions is the study of light ions retention, which can be produced by transmutation reactions and/or introduced by interaction with the plasma. In ceramic breeders the understanding of the hydrogen isotopes behaviour and specially the diffusion of tritium to the surface is crucial. Moreover the evolution of the microstructure during irradiation with energetic ions, neutrons and electrons is complex because of the interaction of a high number of processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the particular characteristics of the fusion products, i.e. very short pulses (less than a few μs long for ions when arriving to the walls; less than 1 ns long for X-rays), very high fluences ( 10 13 particles/cm 2 for both ions and X rays photons) and broad particle energy spectra (up to 10 MeV ions and 100 keV photons), the laser fusion community lacks of facilities to accurately test plasma facing materials under those conditions. In the present work, the ability of ultraintese lasers to create short pulses of energetic particles and high fluences is addressed as a solution to reproduce those ion and X-ray bursts. Based on those parameters, a comparison between fusion ion and laser driven ion beams is presented and discussed, describing a possible experimental set-up to generate with lasers the appropriate ion pulses. At the same time, the possibility of generating X-ray or neutron beams which simulate those of laser fusion environments is also indicated and assessed under current laser intensities. It is concluded that ultraintense lasers should play a relevant role in the validation of materials for laser fusion facilities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Damages -reduced in fruit packing lines is a major cause of grace reduction and quality loos in fresh marks: fruit. Fruit must be treated gently during in sir handling to improve their qualityin order to get a good price in a competitive market. The correct post-hardvest handling in fruit packing lines is a prerequisite to cut down the heavy post-harvest losses. Fruit packing lines must be evaluated, studying their design, the impacts applied to the fruits, the characteristics of the materials, etc. This study establishes the possibility of carrying out modifications and tests in a packing line during a long period of time. For this purpose, an experimental fruit packing line has been designed and located in the Agricultural Engineering Department of the Polythecnic University of Madrid with the aim of improving mechanical devices and fruit handling conditions to minimize damage to fruit. The experimental line consists of several transporting belts, one rollers transporter, one sizer, one elevator, one singularizer, and three trays to receive the calibrated fruit. The line has a length of 6.15 m and a width cf 1.9 m. Movement of the different components is regulated by electric motors with variable velocity electronically controlled. The height of the transfer points is variable and can be easily modified. The experimental line has been calibrated using two instrumented spheres IS 100 (8.8 cm Ø and6.2cm Ø). Average acceleration values obtained in all the transfers of the experimental line lay under 80 g's, although there is big variation for some of them being some values above 100 g's.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The verification and validation activity plays a fundamental role in improving software quality. Determining which the most effective techniques for carrying out this activity are has been an aspiration of experimental software engineering researchers for years. This paper reports a controlled experiment evaluating the effectiveness of two unit testing techniques (the functional testing technique known as equivalence partitioning (EP) and the control-flow structural testing technique known as branch testing (BT)). This experiment is a literal replication of Juristo et al. (2013).Both experiments serve the purpose of determining whether the effectiveness of BT and EP varies depending on whether or not the faults are visible for the technique (InScope or OutScope, respectively). We have used the materials, design and procedures of the original experiment, but in order to adapt the experiment to the context we have: (1) reduced the number of studied techniques from 3 to 2; (2) assigned subjects to experimental groups by means of stratified randomization to balance the influence of programming experience; (3) localized the experimental materials and (4) adapted the training duration. We ran the replication at the Escuela Politécnica del Ejército Sede Latacunga (ESPEL) as part of a software verification & validation course. The experimental subjects were 23 master?s degree students. EP is more effective than BT at detecting InScope faults. The session/program andgroup variables are found to have significant effects. BT is more effective than EP at detecting OutScope faults. The session/program and group variables have no effect in this case. The results of the replication and the original experiment are similar with respect to testing techniques. There are some inconsistencies with respect to the group factor. They can be explained by small sample effects. The results for the session/program factor are inconsistent for InScope faults.We believe that these differences are due to a combination of the fatigue effect and a technique x program interaction. Although we were able to reproduce the main effects, the changes to the design of the original experiment make it impossible to identify the causes of the discrepancies for sure. We believe that further replications closely resembling the original experiment should be conducted to improve our understanding of the phenomena under study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thin film photovoltaic (TF) modules have gained importance in the photovoltaic (PV) market. New PV plants increasingly use TF technologies. In order to have a reliable sample of a PV module population, a huge number of modules must be measured. There is a big variety of materials used in TF technology. Some of these modules are made of amorphous or microcrystalline silicon. Other are made of CIS or CdTe. Not all these materials respond the same under standard test conditions (STC) of power measurement. Power rates of the modules may vary depending on both the extent and the history of sunlight exposure. Thus, it is necessary a testing method adapted to each TF technology. This test must guarantee repeatability of measurements of generated power. This paper shows responses of different commercial TF PV modules to sunlight exposure. Several test procedures were performed in order to find the best methodology to obtain measurements of TF PV modules at STC in the easiest way. A methodology for indoor measurements adapted to these technologies is described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent developments in the area of multiscale modeling of fiber-reinforced polymers are presented. The overall strategy takes advantage of the separa-tion of length scales between different entities (ply, laminate, and component) found in composite structures. This allows us to carry out multiscale modeling by computing the properties of one entity (e.g., individual plies) at the relevant length scale, homogenizing the results into a constitutive model, and passing this information to the next length scale to determine the mechanical behavior of the larger entity (e.g., laminate). As a result, high-fidelity numerical sim-ulations of the mechanical behavior of composite coupons and small compo-nents are nowadays feasible starting from the matrix, fiber, and interface properties and spatial distribution. Finally, the roadmap is outlined for extending the current strategy to include functional properties and processing into the simulation scheme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current magnetic confinement nuclear fusion power reactor concepts going beyond ITER are based on assumptions about the availability of materials with extreme mechanical, heat, and neutron load capacity. In Europe, the development of such structural and armour materials together with the necessary production, machining, and fabrication technologies is pursued within the EFDA long-term fusion materials programme. This paper reviews the progress of work within the programme in the area of tungsten and tungsten alloys. Results, conclusions, and future projections are summarized for each of the programme´s main subtopics, which are: (1) fabrication, (2) structural W materials, (3) W armour materials, and (4) materials science and modelling. It gives a detailed overview of the latest results on materials research, fabrication processes, joining options, high heat flux testing, plasticity studies, modelling, and validation experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work aims to contribute to a further understanding of the fundamentals of crystallographic slip and grain boundary sliding in the γ-TiAl Ti–45Al–2Nb–2Mn (at%)–0.8 vol%TiB2 intermetallic alloy, by means of in situ high-temperature tensile testing combined with electron backscatter diffraction (EBSD). Several microstructures, containing different fractions and sizes of lamellar colonies and equiaxed γ-grains, were fabricated by either centrifugal casting or powder metallurgy, followed by heat treatment at 1300 °C and furnace cooling. in situ tensile and tensile-creep experiments were performed in a scanning electron microscope (SEM) at temperatures ranging from 580 °C to 700 °C. EBSD was carried out in selected regions before and after straining. Our results suggest that, during constant strain rate tests, true twin γ/γ interfaces are the weakest barriers to dislocations and, thus, that the relevant length scale might be influenced by the distance between non-true twin boundaries. Under creep conditions both grain/colony boundary sliding (G/CBS) and crystallographic slip are observed to contribute to deformation. The incidence of boundary sliding is particularly high in γ grains of duplex microstructures. The slip activity during creep deformation in different microstructures was evaluated by trace analysis. Special emphasis was placed in distinguishing the compliance of different slip events with the Schmid law with respect to the applied stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El desarrollo de bioqueroseno de diferentes orígenes y su uso creciente, hacen necesario el estudio de la compatibilidad estos nuevos combustibles con los materiales y recubrimientos con los que se encuentra en contacto. Por tanto, el presente proyecto estudia la compatibilidad de los bioquerosenos mezclados en diferentes proporciones con queroseno mineral, para evaluar posteriormente su compatibilidad con diferentes polímeros y composites presentes en la estructura de un avión.Currently there is a big interest to increase the sources of alternative fuels for aviation to get a reduction of their carbon footprint and the deep energetic dependence from fossil fuels of different countries. Although there are studies about how to produce this alternative fuel and how to accomplish the standards for a good performance in the aircraft turbines, there are no studies about how these fuels could affect the different materials of airplanes. In this context this work describes the compatibility of biokerosene blends of coconut, babassu and palm kernel with commercial Jet A-1 testing airplane polymeric materials, metals and composites. As a conclusion, all material samples show a good compatibility with the fuel blends tested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The verification and validation activity plays a fundamental role in improving software quality. Determining which the most effective techniques for carrying out this activity are has been an aspiration of experimental software engineering researchers for years. This paper reports a controlled experiment evaluating the effectiveness of two unit testing techniques (the functional testing technique known as equivalence partitioning (EP) and the control-flow structural testing technique known as branch testing (BT)). This experiment is a literal replication of Juristo et al. (2013). Both experiments serve the purpose of determining whether the effectiveness of BT and EP varies depending on whether or not the faults are visible for the technique (InScope or OutScope, respectively). We have used the materials, design and procedures of the original experiment, but in order to adapt the experiment to the context we have: (1) reduced the number of studied techniques from 3 to 2; (2) assigned subjects to experimental groups by means of stratified randomization to balance the influence of programming experience; (3) localized the experimental materials and (4) adapted the training duration. We ran the replication at the Escuela Polite?cnica del Eje?rcito Sede Latacunga (ESPEL) as part of a software verification & validation course. The experimental subjects were 23 master?s degree students. EP is more effective than BT at detecting InScope faults. The session/program and group variables are found to have significant effects. BT is more effective than EP at detecting OutScope faults. The session/program and group variables have no effect in this case. The results of the replication and the original experiment are similar with respect to testing techniques. There are some inconsistencies with respect to the group factor. They can be explained by small sample effects. The results for the session/program factor are inconsistent for InScope faults. We believe that these differences are due to a combination of the fatigue effect and a technique x program interaction. Although we were able to reproduce the main effects, the changes to the design of the original experiment make it impossible to identify the causes of the discrepancies for sure. We believe that further replications closely resembling the original experiment should be conducted to improve our understanding of the phenomena under study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Los sensores de fibra óptica son una tecnología que ha madurado en los últimos años, sin embargo, se requiere un mayor desarrollo de aplicaciones para materiales naturales como las rocas, que por ser agregados complejos pueden contener partículas minerales y fracturas de tamaño mucho mayor que las galgas eléctricas usadas tradicionalmente para medir deformaciones en las pruebas de laboratorio, ocasionando que los resultados obtenidos puedan ser no representativos. En este trabajo fueron diseñados, fabricados y probados sensores de deformación de gran área y forma curvada, usando redes de Bragg en fibra óptica (FBG) con el objetivo de obtener registros representativos en rocas que contienen minerales y estructuras de diversas composiciones, tamaños y direcciones. Se presenta el proceso de elaboración del transductor, su caracterización mecánica, su calibración y su evaluación en pruebas de compresión uniaxial en muestras de roca. Para verificar la eficiencia en la transmisión de la deformación de la roca al sensor una vez pegado, también fue realizado el análisis de la transferencia incluyendo los efectos del adhesivo, de la muestra y del transductor. Los resultados experimentales indican que el sensor desarrollado permite registro y transferencia de la deformación fiables, avance necesario para uso en rocas y otros materiales heterogénos, señalando una interesante perspectiva para aplicaciones sobre superficies irregulares, pues permite aumentar a voluntad el tamaño y forma del área de registro, posibilita también obtener mayor fiabilidad de resultados en muestras de pequeño tamaño y sugiere su conveniencia en obras, en las cuales los sistemas eléctricos tradicionales tienen limitaciones. ABSTRACT Optical fiber sensors are a technology that has matured in recent years, however, further development for rock applications is needed. Rocks contain mineral particles and features larger than electrical strain gauges traditionally used in laboratory tests, causing the results to be unrepresentative. In this work were designed, manufactured, and tested large area and curved shape strain gages, using fiber Bragg gratings in optical fiber (FBG) in order to obtain representative measurement on surface rocks samples containing minerals and structures of different compositions, sizes and directions. This reports presents the processes of manufacturing, mechanical characterization, calibration and evaluation under uniaxial compression tests on rock samples. To verify the efficiency of rock deformation transmitted to attached sensor, it was also performed the analysis of the strain transfer including the effects of the bonding, the sample and the transducer. The experimental results indicate that the developed sensor enables reliable measurements of the strain and its transmission from rock to sensor, appropriate for use in heterogeneous materials, pointing an interesting perspective for applications on irregular surfaces, allowing increasing at will the size and shape of the measurement area. This research suggests suitability of the optical strain gauge for real scale, where traditional electrical systems have demonstrated some limitations.