8 resultados para Marangoni-Convection
em Universidad Politécnica de Madrid
Resumo:
The problem of determination of the turbulence onset in natural convection on heated inclined plates in an air environment has been experimentally revisited. The transition has been detected by using hot wire velocity measurements. The onset of turbulence has been considered to take place where velocity fluctuations (measured through turbulence intensity) start to grow. Experiments have shown that the onset depends not only on the Grashof number defined in terms of the temperature difference between the heated plate and the surrounding air. A correlation between dimensionless Grashof and Reynolds numbers has been obtained, fitting quite well the experimental data.
Resumo:
We review recent computational results for hexagon patterns in non- Boussinesq convection. For sufficiently strong dependence of the fluid parameters on the temperature we find reentrance of steady hexagons, i.e. while near onset the hexagon patterns become unstable to rolls as usually, they become again stable in the strongly nonlinear regime. If the convection apparatus is rotated about a vertical axis the transition from hexagons to rolls is replaced by a Hopf bifurcation to whirling hexagons. For weak non-Boussinesq effects they display defect chaos of the type described by the two-dimensional (2D) complex Ginzburg-andau equation. For stronger non-Boussinesq effects the Hopf bifurcation becomes subcritical and localized bursting of the whirling amplitude is found. In this regime the cou- pling of the whirling amplitude to (small) deformations of the hexagon lattice becomes important. For yet stronger non-Boussinesq effects this coupling breaks up the hexagon lattice and strongly disordered states characterized by whirling and lattice defects are obtained.
Resumo:
The stability of a liquid layer with an undeformable interface open to the atmo- sphere, subjected to a horizontal temperature gradient, is theoretically analysed. Buoyancy and surface tension forces give rise to a basic flow for any temperature dif- ference applied on the system. Depending on the liquid depth, this basic flow is desta- bilised either by an oscillatory instability, giving rise to the so-called hydrothermal waves, or by a stationary instability leading to corotating rolls. Oscillatory perturba- tions are driven by the basic flow and therefore one must distinguish between convec- tive and absolute thresholds. The instability mechanisms as well as the di¿erent re- gimes observed in experiments are discussed. The calculations are performed for a fluid used in recent experiments, namely silicone oil of 0.65 cSt ðPr 1?4 10Þ. In partic- ular, it is shown that two branches of absolute instability exist, which may be related to the two types of hydrothermal waves observed experimentally
Resumo:
We study a model equation that mimics convection under rotation in a fluid with temperature- dependent properties (non-Boussinesq (NB)), high Prandtl number and idealized boundary conditions. It is based on a model equation proposed by Segel [1965] by adding rotation terms that lead to a Kuppers-Lortz instability [Kuppers & Lortz, 1969] and can develop into oscillating hexagons. We perform a weakly nonlinear analysis to find out explicitly the coefficients in the amplitude equation as functions of the rotation rate. These equations describe hexagons and os- cillating hexagons quite well, and include the Busse?Heikes (BH) model [Busse & Heikes, 1980] as a particular case. The sideband instabilities as well as short wavelength instabilities of such hexagonal patterns are discussed and the threshold for oscillating hexagons is determined.
Resumo:
We study the stability and dynamics of non-Boussinesq convection in pure gases ?CO2 and SF6? with Prandtl numbers near Pr? 1 and in a H2-Xe mixture with Pr= 0.17. Focusing on the strongly nonlinear regime we employ Galerkin stability analyses and direct numerical simulations of the Navier-Stokes equations. For Pr ? 1 and intermediate non-Boussinesq effects we find reentrance of stable hexagons as the Rayleigh number is increased. For stronger non-Boussinesq effects the usual, transverse side-band instability is superseded by a longitudinal side-band instability. Moreover, the hexagons do not exhibit any amplitude instability to rolls. Seemingly, this result contradicts the experimentally observed transition from hexagons to rolls. We resolve this discrepancy by including the effect of the lateral walls. Non-Boussinesq effects modify the spiral defect chaos observed for larger Rayleigh numbers. For convection in SF6 we find that non-Boussinesq effects strongly increase the number of small, compact convection cells and with it enhance the cellular character of the patterns. In H2-Xe, closer to threshold, we find instead an enhanced tendency toward roll-like structures. In both cases the number of spirals and of targetlike components is reduced. We quantify these effects using recently developed diagnostics of the geometric properties of the patterns.
Resumo:
We employ numerical computations of the full Navier-Stokes equations to investigate non-Boussinesq convection in a rotating system using water as the working fluid. We identify two regimes. For weak non- Boussinesq effects the Hopf bifurcation from steady to oscillating (whirling) hexagons is supercritical and typical states exhibit defect chaos that is systematically described by the cubic complex Ginzburg-Landau equation. For stronger non-Boussinesq effects the Hopf bifurcation becomes subcritical and the oscil- lations exhibit localized chaotic bursting, which is modeled by a quintic complex Ginzburg-Landau equation.
Resumo:
While non-Boussinesq hexagonal convection patterns are known to be stable close to threshold (i.e. for Rayleigh numbers R ? Rc ), it has often been assumed that they are always unstable to rolls for slightly higher Rayleigh numbers. Using the incompressible Navier?Stokes equations for parameters corresponding to water as the working fluid, we perform full numerical stability analyses of hexagons in the strongly nonlinear regime ( ? (R ? Rc )/Rc = O(1)). We find ?re-entrant? behaviour of the hexagons, i.e. as is increased they can lose and regain stability. This can occur for values of as low as = 0.2. We identify two factors contributing to the re-entrance: (i) far above threshold there exists a hexagon attractor even in Boussinesq convection as has been shown recently and (ii) the non-Boussinesq effects increase with . Using direct simulations for circular containers we show that the re-entrant hexagons can prevail even for sidewall conditions that favour convection in the form of competing stable rolls. For sufficiently strong non-Boussinesq effects hexagons even become stable over the whole -range considered, 0 6 6 1.5.
Resumo:
We present and analyze a subgrid viscosity Lagrange-Galerk in method that combines the subgrid eddy viscosity method proposed in W. Layton, A connection between subgrid scale eddy viscosity and mixed methods. Appl. Math. Comp., 133: 14 7-157, 2002, and a conventional Lagrange-Galerkin method in the framework of P1⊕ cubic bubble finite elements. This results in an efficient and easy to implement stabilized method for convection dominated convection diffusion reaction problems. Numerical experiments support the numerical analysis results and show that the new method is more accurate than the conventional Lagrange-Galerkin one.