5 resultados para Maple.

em Universidad Politécnica de Madrid


Relevância:

10.00% 10.00%

Publicador:

Resumo:

El texto describe la forma de ensamblar la matriz de equilibrio de estructuras de barras articuladas en los nodos, en 3D. Se explica previamente los conceptos teóricos y luego se implementa dentro del software comercial Maple.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At present, in the University curricula in most countries, the decision theory and the mathematical models to aid decision making is not included, as in the graduate program like in Doctored and Master´s programs. In the Technical School of High Level Agronomic Engineers of the Technical University of Madrid (ETSIA-UPM), the need to offer to the future engineers training in a subject that could help them to take decisions in their profession was felt. Along the life, they will have to take a lot of decisions. Ones, will be important and others no. In the personal level, they will have to take several very important decisions, like the election of a career, professional work, or a couple, but in the professional field, the decision making is the main role of the Managers, Politicians and Leaders. They should be decision makers and will be paid for it. Therefore, nobody can understand that such a professional that is called to practice management responsibilities in the companies, does not take training in such an important matter. For it, in the year 2000, it was requested to the University Board to introduce in the curricula an optional qualified subject of the second cycle with 4,5 credits titled " Mathematical Methods for Making Decisions ". A program was elaborated, the didactic material prepared and programs as Maple, Lingo, Math Cad, etc. installed in several IT classrooms, where the course will be taught. In the course 2000-2001 this subject was offered with a great acceptance that exceeded the forecasts of capacity and had to be prepared more classrooms. This course in graduate program took place in the Department of Applied Mathematics to the Agronomic Engineering, as an extension of the credits dedicated to Mathematics in the career of Engineering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este proyecto se enmarca dentro de la Computación Simbólica y de los fundamentos matemáticos del Diseño Geométrico Asistido por ordenador (CAGD). Se abordara uno de los problemas principales en el ámbito del CAGD y que es la manipulación de las Curvas Concoide. La importancia del avance en la manipulación de las curvas concoide radica en el papel fundamental que desempeñan en múltiples aplicaciones en la actualidad dentro de campos de diversa índole tales como la medicina, la óptica, el electromagnetismo, la construcción, etc. El objetivo principal de este proyecto es el diseño e implementación de algoritmos para el estudio, cálculo y manipulación de curvas concoides, utilizando técnicas propias del Calculo Simbólico. Esta implementación se ha programado utilizando el sistema de computación simbólica Maple. El proyecto consiste en dos partes bien diferenciadas, una parte teórica y otra más practica. La primera incluye la descripción geométrica y definición formal de curvas concoide, así como las ideas y propiedades básicas. De forma más precisa, se presenta un estudio matemático sobre el análisis de racionalidad de estas curvas, explicando los algoritmos que serán implementados en las segunda parte, y que constituye el objetivo principal de este proyecto. Para cerrar esta parte, se presenta una pequeña introducción al sistema y a la programación en Maple. Por otro lado, la segunda parte de este proyecto es totalmente original, y en ella el autor desarrolla las implementaciones en Maple de los algoritmos presentados en la parte anterior, así como la creación de un paquete Maple que las recoge. Por último, se crean las paginas de ayudas en el sistema Maple para la correcta utilización del paquete matemático anteriormente mencionado. Una vez terminada la parte de implementación, se aplican los algoritmos implementados a una colección de curvas clásicas conocidas, recogiendo los datos y resultados obtenidos en un atlas de curvas. Finalmente, se presenta una recopilación de las aplicaciones más destacadas en las que las concoides desempeñan un papel importante así como una breve reseña sobre las concoides de superficies, objeto de varios estudios en la actualidad y a los que se considera que el presente proyecto les puede resultar de gran utilidad. Abstract This project is set up in the framework of Symbolic Computation as well as in the implementation of algebraic-geometric problems that arise from Computer Aided Geometric Design (C.A.G.D.) applications. We address problems related to conchoid curves. The importance of these curves is the fundamental role that they play in current applications as medicine, optics, electromagnetism, construction, etc. The main goal of this project is to design and implement some algorithms to solve problems in studying, calculating and generating conchoid curves with symbolic computation techniques. For this purpose, we program our implementations in the symbolic system “Maple". The project consists of two differentiated parts, one more theoretical part and another part more practical. The first one includes the description of conchoid curves as well as the basic ideas about the concept and its basic properties. More precisely, we introduce in this part the mathematical analysis of the rationality of the conchoids, and we present the algorithms that will be implemented. Furthermore, the reader will be brie y introduced in Maple programming. On the other hand, the second part of this project is totally original. In this more practical part, the author presents the implemented algorithms and a Maple package that includes them, as well as their help pages. These implemented procedures will be check and illustrated with some classical and well known curves, collecting the main properties of the conchoid curves obtained in a brief atlas. Finally, a compilation of the most important applications where conchoids play a fundamental role, and a brief introduction to the conchoids of surfaces, subject of several studies today and where this project could be very useful, are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabajo fin de grado es un estudio sobre la reconstrucción del espectro de irradiancia solar en la superficie de Marte y de la radiación solar recibida en lo alto de la atm´osfera. Se llevará a cabo a partir de los datos recogidos por “arrays” de fotodiodos, que se integran en unos sensores, y miden la intensidad de la radiación recibida del cuerpo negro (el Sol), en un rango de longitudes de onda del espectro electromagnético. Para lograr esta reconstrucción, se ha necesitado desarrollar técnicas de interpolación y modelos matemáticos. Estos m´etodos los he implementado con el lenguaje de programación Matlab y me he ayudado de Maple para conseguir distintos resultados. Estos procedimientos serán aplicados a tres configuraciones de sondas en las que cada una cuenta con un número determinado de fotodiodos. El objetivo es reconstruir este espectro de irradiancia aproximándolo lo máximo posible a unos conjuntos de datos estimados, según modelos de transferencia radiativa, que me han sido proporcionados para el cuerpo negro y que miden la radiación solar recibida en la superficie y en lo alto de la atmósfera del Planeta rojo. Este trabajo está basado en un proyecto de investigación que se está llevando a cabo desde hace varios años por un equipo de investigadores de varias universidades de Madrid, conjuntamente con el I.N.T.A. (Instituto Nacional de Técnica Aeroespacial), entre los que se encuentra mi tutor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is framed within the problem of analyzing the rationality of the components of two classical geometric constructions, namely the offset and the conchoid to an algebraic plane curve and, in the affirmative case, the actual computation of parametrizations. We recall some of the basic definitions and main properties on offsets (see [13]), and conchoids (see [15]) as well as the algorithms for parametrizing their rational components (see [1] and [16], respectively). Moreover, we implement the basic ideas creating two packages in the computer algebra system Maple to analyze the rationality of conchoids and offset curves, as well as the corresponding help pages. In addition, we present a brief atlas where the offset and conchoids of several algebraic plane curves are obtained, their rationality analyzed, and parametrizations are provided using the created packages.