6 resultados para Management of change
em Universidad Politécnica de Madrid
Resumo:
The need of decarbonization of urban mobility is one of the main priorities for all countries to achieve greenhouse gas (GHG) emissions reduction targets. In general, the transport modes which have experienced the most growth in recent years tend to be the most polluting. Most efforts have been focused on the vehicle efficiency improvements and vehicle fleet renewal; nevertheless more emphasis should be placed on strategies related to the management of urban mobility and modal share. Research of individual travel which analyzes CO2 emissions and car and public transport share in daily mobility will enable better assessments of the potential of urban mobility measures introduced to limit GHG emissions produced by transport in cities. This paper explores the sustainability impacts of daily mobility in Spain using data from two National Travel Surveys (NTSs) (2000 and 2006) and includes a method by which to estimate the CO2 emissions associated with each journey and each surveyed individual. The results demonstrate that in the 2000 to 2006 period, there has been an increase in daily mobility which has led to a 17% increase in CO2 emissions. When separated by transport mode, cars prove to be the main contributor to that increase, followed by public transport. More focus should be directed toward modal shift strategies which not only take the number of journeys into account but also consider distance. The contributions of this paper have potential applications in the assessment of current and future urban transport policies.
Resumo:
The need to decarbonize urban mobility is one of the main motivations for all countries to achieve reduction targets for greenhouse gas (GHG) emissions. In general, the transport modes that have experienced the most growth in recent years tend to be the most polluting. Most efforts have focused on improvements in vehicle efficiency and on the renewal of vehicle fleets; more emphasis should be placed on strategies related to the management of urban mobility and modal share. Research of individual travel that analyzes carbon dioxide (CO2) emissions and car and public transport share in daily mobility will enable better assessments of the potential of urban mobility measures introduced to limit GHG emissions produced by transport in cities. The climate change impacts of daily mobility in Spain are explored with data from two national travel surveys in 2000 and 2006, and a method for estimating the CO2 emissions associated with each journey and each surveyed individual is provided. The results demonstrate that from 2000 to 2006, daily mobility has increased and has led to a 17% increase in CO2 emissions. When these results are separated by transport mode, cars prove to be the main contributor to that increase, followed by public transport. More focus should be directed toward modal shift strategies, which take into account not only the number of journeys but also the distance traveled. These contributions have potential applications in the assessment of current and future urban transport policies related to low-carbon urban transportation.
Resumo:
The intense activity in the construction sector during the last decade has generated huge volumes of construction and demolition (C&D) waste. In average, Europe has generated around 890 million tonnes of construction and demolition waste per year. Although now the activity has entered in a phase of decline, due to the change of the economic cycle, we don’t have to forget all the problems caused by such waste, or rather, by their management which is still far from achieving the overall target of 70% for C&D waste --excludes soil and stones not containing dangerous substances-- should be recycled in the EU Countries by 2020 (Waste Framework Directive). But in fact, the reality is that only 50% of the C&D waste generated in EU is recycled and 40% of it corresponds to the recycling of soil and stones not containing dangerous substances. Aware of this situation, the European Countries are implementing national policies as well as different measures to prevent the waste that can be avoidable and to promote measures to increase recycling and recovering. In this aspect, this article gives an overview of the amount of C&D waste generated in European countries, as well as the amount of this waste that is being recycled and the different measures that European countries have applied to solve this situation.
Resumo:
The construction industry, one of the most important ones in the development of a country, generates unavoidable impacts on the environment. The social demand towards greater respect for the environment is a high and general outcry. Therefore, the construction industry needs to reduce the impact it produces. Proper waste management is not enough; we must take a further step in environmental management, where new measures need to be introduced for the prevention at source, such as good practices to promote recycling. Following the amendment of the legal frame applicable to Construction and Demolition Waste (C&D waste), important developments have been incorporated in European and International laws, aiming to promote the culture of reusing and recycling. This change of mindset, that is progressively taking place in society, is allowing for the consideration of C&D waste no longer as an unusable waste, but as a reusable material. The main objective of the work presented in this paper is to enhance C&D waste management systems through the development of preventive measures during the construction process. These measures concern all the agents intervening in the construction process as only the personal implication of all of them can ensure an efficient management of the C&D waste generated. Finally, a model based on preventive measures achieves organizational cohesion between the different stages of the construction process, as well as promoting the conservation of raw materials through the use and waste minimization. All of these in order to achieve a C&D waste management system, whose primary goal is zero waste generation
Resumo:
Esta tesis estudia la monitorización y gestión de la Calidad de Experiencia (QoE) en los servicios de distribución de vídeo sobre IP. Aborda el problema de cómo prevenir, detectar, medir y reaccionar a las degradaciones de la QoE desde la perspectiva de un proveedor de servicios: la solución debe ser escalable para una red IP extensa que entregue flujos individuales a miles de usuarios simultáneamente. La solución de monitorización propuesta se ha denominado QuEM(Qualitative Experience Monitoring, o Monitorización Cualitativa de la Experiencia). Se basa en la detección de las degradaciones de la calidad de servicio de red (pérdidas de paquetes, disminuciones abruptas del ancho de banda...) e inferir de cada una una descripción cualitativa de su efecto en la Calidad de Experiencia percibida (silencios, defectos en el vídeo...). Este análisis se apoya en la información de transporte y de la capa de abstracción de red de los flujos codificados, y permite caracterizar los defectos más relevantes que se observan en este tipo de servicios: congelaciones, efecto de “cuadros”, silencios, pérdida de calidad del vídeo, retardos e interrupciones en el servicio. Los resultados se han validado mediante pruebas de calidad subjetiva. La metodología usada en esas pruebas se ha desarrollado a su vez para imitar lo más posible las condiciones de visualización de un usuario de este tipo de servicios: los defectos que se evalúan se introducen de forma aleatoria en medio de una secuencia de vídeo continua. Se han propuesto también algunas aplicaciones basadas en la solución de monitorización: un sistema de protección desigual frente a errores que ofrece más protección a las partes del vídeo más sensibles a pérdidas, una solución para minimizar el impacto de la interrupción de la descarga de segmentos de Streaming Adaptativo sobre HTTP, y un sistema de cifrado selectivo que encripta únicamente las partes del vídeo más sensibles. También se ha presentado una solución de cambio rápido de canal, así como el análisis de la aplicabilidad de los resultados anteriores a un escenario de vídeo en 3D. ABSTRACT This thesis proposes a comprehensive approach to the monitoring and management of Quality of Experience (QoE) in multimedia delivery services over IP. It addresses the problem of preventing, detecting, measuring, and reacting to QoE degradations, under the constraints of a service provider: the solution must scale for a wide IP network delivering individual media streams to thousands of users. The solution proposed for the monitoring is called QuEM (Qualitative Experience Monitoring). It is based on the detection of degradations in the network Quality of Service (packet losses, bandwidth drops...) and the mapping of each degradation event to a qualitative description of its effect in the perceived Quality of Experience (audio mutes, video artifacts...). This mapping is based on the analysis of the transport and Network Abstraction Layer information of the coded stream, and allows a good characterization of the most relevant defects that exist in this kind of services: screen freezing, macroblocking, audio mutes, video quality drops, delay issues, and service outages. The results have been validated by subjective quality assessment tests. The methodology used for those test has also been designed to mimic as much as possible the conditions of a real user of those services: the impairments to evaluate are introduced randomly in the middle of a continuous video stream. Based on the monitoring solution, several applications have been proposed as well: an unequal error protection system which provides higher protection to the parts of the stream which are more critical for the QoE, a solution which applies the same principles to minimize the impact of incomplete segment downloads in HTTP Adaptive Streaming, and a selective scrambling algorithm which ciphers only the most sensitive parts of the media stream. A fast channel change application is also presented, as well as a discussion about how to apply the previous results and concepts in a 3D video scenario.
Resumo:
Drip irrigation combined with split application of fertilizer nitrogen (N) dissolved in the irrigation water (i.e. drip fertigation) is commonly considered best management practice for water and nutrient efficiency. As a consequence, its use is becoming widespread. Some of the main factors (water-filled pore space, NH4+ and NO3−) regulating the emissions of greenhouse gases (i.e. N2O, CO2 and CH4) and NO from agroecosystems can easily be manipulated by drip fertigation without yield penalties. In this study, we tested management options to reduce these emissions in a field experiment with a melon (Cucumis melo L.) crop. Treatments included drip irrigation frequency (weekly/daily) and type of N fertilizer (urea/calcium nitrate) applied by fertigation. Crop yield, environmental parameters, soil mineral N concentrations and fluxes of N2O, NO, CH4 and CO2 were measured during 85 days. Fertigation with urea instead of calcium nitrate increased N2O and NO emissions by a factor of 2.4 and 2.9, respectively (P < 0.005). Daily irrigation reduced NO emissions by 42% (P < 0.005) but increased CO2 emissions by 21% (P < 0.05) compared with weekly irrigation. We found no relation between irrigation frequency and N2O emissions. Based on yield-scaled Global Warming Potential as well as NO cumulative emissions, we conclude that weekly fertigation with a NO3−-based fertilizer is the best option to combine agronomic productivity with environmental sustainability. Our study shows that adequate management of drip fertigation, while contributing to the attainment of water and food security, may provide an opportunity for climate change mitigation.