3 resultados para Magnetic separation
em Universidad Politécnica de Madrid
Resumo:
La tesis doctoral “Mejoras Tecnológicas en el Reciclado de Residuos de Construcción y Demolición (RCD)” investiga la utilización de los separadores hidráulicos para mejorar la calidad de los áridos reciclados, y se demuestra que es un equipo más eficiente que las técnicas actuales basadas en la simple separación por densidad. En la tesisn se ha realizado inicialmente una revisión de la situación del sector, para a continuación centrarse en los sistemas de separación utilizados en las plantas de valorización españolas. Una vez analizados éstos y en particular los de tipo hidráulico, de los que se resume un estudio comparativo, se ha procedido a ensayar a escala de Laboratorio el comportamiento de un separador hidráulico de aceleración diferencial con diversos materiales procedentes de tres plantas de reciclaje. Adicionalmente fueron probadas otras técnicas, como es la separación magnética para mejorar la calidad de los productos reciclados. En vista de los buenos resultados de la investigación, se procede a escalar los ensayos con equipo piloto y distintas composiciones de naturaleza cerámica y hormigón. El equipo utilizado fue un jig de 3´x 1´ en el que se ensayaron las tres muestras con resultados diferentes. La limpieza de los materiales impropios y el yeso fue positiva en las tres muestras, y únicamente la separación entre sí de los componentes pétreos, resultó dependiente de su proporción en la mezcla, obteniéndose los mejores resultados en las muestras con menor cantidad de materiales cerámicos. Finalmente, se procede a analizar en un laboratorio reconocido las propiedades de los áridos reciclados obtenidos en la separación hidráulica por jig, y constatar las mejoras conseguidas para su utilización como materiales de construcción en usos ligados y no ligados. Todo lo anterior permite afirmar que los equipos de separación hidráulica con aceleración diferencial (jig) presentan una innovación tecnológica en el reciclado de los residuos de construcción y demolición (RCD). ABSTRACT The doctoral thesis “Technological Improvements in Recycling of Construction and Demolition Waste (C&DW)” researches the hydraulic separators utilization in order to improve the recycled aggregates quality, demonstrating that the equipment is more efficient than the current techniques based on the simple density separation. This doctoral thesis has been initially done reviewing the situation of the sector and focusing afterwards on the separation systems used at the Spanish recovery facilities. Once analyzed these and, particularly, the hydraulic type ones, from which a comparative study has been summarized, the behavior of a differential acceleration hydraulic separator with various materials coming from three recycling plants has been tested at laboratory scale. Additionally other techniques have been tested, such as the magnetic separation to improve the quality of recycled products. In view of the good investigation results, the testing process scaled up by using pilot equipment and different ceramics and concrete compositions. The equipment utilized was a jig 3” x 1”, in which the three samples were tested with different results. The unsuitable materials and gypsum cleanliness was positive on the three samples and only the separation among the stony components turned out to be dependent of its proportion in the mixing, obtaining the best results in the samples with less quantity of ceramic materials. Finally, the properties of the recycled aggregates obtained by jig hydraulic separation are analyzed at a recognized laboratory and the improvements gained for their utilization as construction materials, in bounded and unbounded uses, are stated. The facts cited are a basis for affirming that the hydraulic separator equipments with differential acceleration (jig) offer a technological innovation in the Recycling of Construction and Demolition Waste (C&DW).
Resumo:
A previous axisymmetric model of the supersonic expansion of a collisionless, hot plasma in a divergent magnetic nozzle is extended here in order to include electron-inertia effects. Up to dominant order on all components of the electron velocity, electron momentum equations still reduce to three conservation laws. Electron inertia leads to outward electron separation from the magnetic streamtubes. The progressive plasma filling of the adjacent vacuum region is consistent with electron-inertia being part of finite electron Larmor radius effects, which increase downstream and eventually demagnetize the plasma. Current ambipolarity is not fulfilled and ion separation can be either outwards or inwards of magnetic streamtubes, depending on their magnetization. Electron separation penalizes slightly the plume efficiency and is larger for plasma beams injected with large pressure gradients. An alternative nonzero electron-inertia model [E. Hooper, J. Propul. Power 9, 757 (1993)] based on cold plasmas and current ambipolarity, which predicts inwards electron separation, is discussed critically. A possible competition of the gyroviscous force with electron-inertia effects is commented briefly.
Resumo:
Esta tesis presenta un análisis teórico del funcionamiento de toberas magnéticas para la propulsión espacial por plasmas. El estudio está basado en un modelo tridimensional y bi-fluido de la expansión supersónica de un plasma caliente en un campo magnético divergente. El modelo básico es ampliado progresivamente con la inclusión de términos convectivos dominantes de electrones, el campo magnético inducido por el plasma, poblaciones electrónicas múltiples a distintas temperaturas, y la capacidad de integrar el flujo en la región de expansión lejana. La respuesta hiperbólica del plasma es integrada con alta precisión y eficiencia haciendo uso del método de las líneas características. Se realiza una caracterización paramétrica de la expansión 2D del plasma en términos del grado de magnetización de iones, la geometría del campo magnético, y el perfil inicial del plasma. Se investigan los mecanismos de aceleración, mostrando que el campo ambipolar convierte la energía interna de electrones en energía dirigida de iones. Las corrientes diamagnéticas de Hall, que pueden hallarse distribuidas en el volumen del plasma o localizadas en una delgada capa de corriente en el borde del chorro, son esenciales para la operación de la tobera, ya que la fuerza magnética repulsiva sobre ellas es la encargada de confinar radialmente y acelerar axialmente el plasma. El empuje magnético es la reacción a esta fuerza sobre el motor. La respuesta del plasma muestra la separación gradual hacia adentro de los tubos de iones respecto de los magnéticos, lo cual produce la formación de corrientes eléctricas longitudinales y pone el plasma en rotación. La ganancia de empuje obtenida y las pérdidas radiales de la pluma de plasma se evalúan en función de los parámetros de diseño. Se analiza en detalle la separación magnética del plasma aguas abajo respecto a las líneas magnéticas (cerradas sobre sí mismas), necesaria para la aplicación de la tobera magnética a fines propulsivos. Se demuestra que tres teorías existentes sobre separación, que se fundamentan en la resistividad del plasma, la inercia de electrones, y el campo magnético que induce el plasma, son inadecuadas para la tobera magnética propulsiva, ya que producen separación hacia afuera en lugar de hacia adentro, aumentando la divergencia de la pluma. En su lugar, se muestra que la separación del plasma tiene lugar gracias a la inercia de iones y la desmagnetización gradual del plasma que tiene lugar aguas abajo, que permiten la separación ilimitada del flujo de iones respecto a las líneas de campo en condiciones muy generales. Se evalúa la cantidad de plasma que permanece unida al campo magnético y retorna hacia el motor a lo largo de las líneas cerradas de campo, mostrando que es marginal. Se muestra cómo el campo magnético inducido por el plasma incrementa la divergencia de la tobera magnética y por ende de la pluma de plasma en el caso propulsivo, contrariamente a las predicciones existentes. Se muestra también cómo el inducido favorece la desmagnetización del núcleo del chorro, acelerando la separación magnética. La hipótesis de ambipolaridad de corriente local, común a varios modelos de tobera magnética existentes, es discutida críticamente, mostrando que es inadecuada para el estudio de la separación de plasma. Una inconsistencia grave en la derivación matemática de uno de los modelos más aceptados es señalada y comentada. Incluyendo una especie adicional de electrones supratérmicos en el modelo, se estudia la formación y geometría de dobles capas eléctricas en el interior del plasma. Cuando dicha capa se forma, su curvatura aumenta cuanto más periféricamente se inyecten los electrones supratérmicos, cuanto menor sea el campo magnético, y cuanto más divergente sea la tobera magnética. El plasma con dos temperaturas electrónicas posee un mayor ratio de empuje magnético frente a total. A pesar de ello, no se encuentra ninguna ventaja propulsiva de las dobles capas, reforzando las críticas existentes frente a las propuestas de estas formaciones como un mecanismo de empuje. Por último, se presenta una formulación general de modelos autosemejantes de la expansión 2D de una pluma no magnetizada en el vacío. El error asociado a la hipótesis de autosemejanza es calculado, mostrando que es pequeño para plumas hipersónicas. Tres modelos de la literatura son particularizados a partir de la formulación general y comparados. Abstract This Thesis presents a theoretical analysis of the operation of magnetic nozzles for plasma space propulsion. The study is based on a two-dimensional, two-fluid model of the supersonic expansion of a hot plasma in a divergent magnetic field. The basic model is extended progressively to include the dominant electron convective terms, the plasma-induced magnetic field, multi-temperature electron populations, and the capability to integrate the plasma flow in the far expansion region. The hyperbolic plasma response is integrated accurately and efficiently with the method of the characteristic lines. The 2D plasma expansion is characterized parametrically in terms of the ion magnetization strength, the magnetic field geometry, and the initial plasma profile. Acceleration mechanisms are investigated, showing that the ambipolar electric field converts the internal electron energy into directed ion energy. The diamagnetic electron Hall current, which can be distributed in the plasma volume or localized in a thin current sheet at the jet edge, is shown to be central for the operation of the magnetic nozzle. The repelling magnetic force on this current is responsible for the radial confinement and axial acceleration of the plasma, and magnetic thrust is the reaction to this force on the magnetic coils of the thruster. The plasma response exhibits a gradual inward separation of the ion streamtubes from the magnetic streamtubes, which focuses the jet about the nozzle axis, gives rise to the formation of longitudinal currents and sets the plasma into rotation. The obtained thrust gain in the magnetic nozzle and radial plasma losses are evaluated as a function of the design parameters. The downstream plasma detachment from the closed magnetic field lines, required for the propulsive application of the magnetic nozzle, is investigated in detail. Three prevailing detachment theories for magnetic nozzles, relying on plasma resistivity, electron inertia, and the plasma-induced magnetic field, are shown to be inadequate for the propulsive magnetic nozzle, as these mechanisms detach the plume outward, increasing its divergence, rather than focusing it as desired. Instead, plasma detachment is shown to occur essentially due to ion inertia and the gradual demagnetization that takes place downstream, which enable the unbounded inward ion separation from the magnetic lines beyond the turning point of the outermost plasma streamline under rather general conditions. The plasma fraction that remains attached to the field and turns around along the magnetic field back to the thruster is evaluated and shown to be marginal. The plasmainduced magnetic field is shown to increase the divergence of the nozzle and the resulting plasma plume in the propulsive case, and to enhance the demagnetization of the central part of the plasma jet, contrary to existing predictions. The increased demagnetization favors the earlier ion inward separation from the magnetic field. The local current ambipolarity assumption, common to many existing magnetic nozzle models, is critically discussed, showing that it is unsuitable for the study of plasma detachment. A grave mathematical inconsistency in a well-accepted model, related to the acceptance of this assumption, is found out and commented on. The formation and 2D shape of electric double layers in the plasma expansion is studied with the inclusion of an additional suprathermal electron population in the model. When a double layer forms, its curvature is shown to increase the more peripherally suprathermal electrons are injected, the lower the magnetic field strength, and the more divergent the magnetic nozzle is. The twoelectron- temperature plasma is seen to have a greater magnetic-to-total thrust ratio. Notwithstanding, no propulsive advantage of the double layer is found, supporting and reinforcing previous critiques to their proposal as a thrust mechanism. Finally, a general framework of self-similar models of a 2D unmagnetized plasma plume expansion into vacuum is presented and discussed. The error associated with the self-similarity assumption is calculated and shown to be small for hypersonic plasma plumes. Three models of the literature are recovered as particularizations from the general framework and compared.