19 resultados para Magnetic Resonance Imaging(MRI)

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To show the results of a device that generates automated olfactory stimuli suitable for functional magnetic resonance imaging (fMRI) experiments. Material and methods: Te n normal volunteers, 5 women and 5 men, were studied. The system allows the programming of several sequences, providing the capability to synchronise the onset of odour presentation with acquisition by a trigger signal of the MRI scanner. The olfactometer is a device that allows selection of the odour, the event paradigm, the time of stimuli and the odour concentration. The paradigm used during fMRI scanning consisted of 15-s blocks. The odorant event took 2 s with butanol, mint and coffee. Results: We observed olfactory activity in the olfactory bulb, entorhinal cortex (4%), amygdala (2.5%) and temporo-parietal cortex, especially in the areas related to emotional integration. Conclusions: The device has demonstrated its effectiveness in stimulating olfactory areas and its capacity to adapt to fMRI equipment.RESUMEN Objetivo: Mostrar los resultados del olfatómetro capaz de generar tareas olfativas en un equipo de resonancia magnética funcional (fMRI). Material y métodos: Estudiamos 10 sujetos normales: 5 varones y 5 mujeres. El olfatómetro está dise ̃ nado para que el estímulo que produce se sincronice con el equipo de fMRI mediante la se ̃ nal desencadenante que suministra el propio equipo. El olfatómetro es capaz de: selec- cionar el olor, secuenciar los distintos olores, programar la frecuencia y duración de los olores y controlar la intensidad del olor. El paradigma utilizado responde a un dise ̃ no de activación asociada a eventos, en el que la duración del bloque de activación y de reposo es de 15 s. La duración del estímulo olfativo (butanol, menta o café) es de 2 segundos, durante toda la serie que consta de 9 ciclos. Resultados: Se ha observado reactividad (contraste BOLD) en las diferentes áreas cerebrales involucradas en las tareas olfativas: bulbo olfatorio, córtex entorrinal (4%), amigdala (2,5%) y córtex temporoparietal. Las áreas relacionadas con integración de las emociones tienen una reactividad mayor. Conclusiones: El dispositivo propuesto nos permite controlar de forma automática y sincronizada los olores necesarios para estudiar la actividad de las áreas olfatorias cerebrales mediante fMRI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to determine the capability of ceMRI based signal intensity (SI) mapping to predict appropriate ICD therapies after PVTSA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El daño cerebral adquirido (DCA) es un problema social y sanitario grave, de magnitud creciente y de una gran complejidad diagnóstica y terapéutica. Su elevada incidencia, junto con el aumento de la supervivencia de los pacientes, una vez superada la fase aguda, lo convierten también en un problema de alta prevalencia. En concreto, según la Organización Mundial de la Salud (OMS) el DCA estará entre las 10 causas más comunes de discapacidad en el año 2020. La neurorrehabilitación permite mejorar el déficit tanto cognitivo como funcional y aumentar la autonomía de las personas con DCA. Con la incorporación de nuevas soluciones tecnológicas al proceso de neurorrehabilitación se pretende alcanzar un nuevo paradigma donde se puedan diseñar tratamientos que sean intensivos, personalizados, monitorizados y basados en la evidencia. Ya que son estas cuatro características las que aseguran que los tratamientos son eficaces. A diferencia de la mayor parte de las disciplinas médicas, no existen asociaciones de síntomas y signos de la alteración cognitiva que faciliten la orientación terapéutica. Actualmente, los tratamientos de neurorrehabilitación se diseñan en base a los resultados obtenidos en una batería de evaluación neuropsicológica que evalúa el nivel de afectación de cada una de las funciones cognitivas (memoria, atención, funciones ejecutivas, etc.). La línea de investigación en la que se enmarca este trabajo de investigación pretende diseñar y desarrollar un perfil cognitivo basado no sólo en el resultado obtenido en esa batería de test, sino también en información teórica que engloba tanto estructuras anatómicas como relaciones funcionales e información anatómica obtenida de los estudios de imagen. De esta forma, el perfil cognitivo utilizado para diseñar los tratamientos integra información personalizada y basada en la evidencia. Las técnicas de neuroimagen representan una herramienta fundamental en la identificación de lesiones para la generación de estos perfiles cognitivos. La aproximación clásica utilizada en la identificación de lesiones consiste en delinear manualmente regiones anatómicas cerebrales. Esta aproximación presenta diversos problemas relacionados con inconsistencias de criterio entre distintos clínicos, reproducibilidad y tiempo. Por tanto, la automatización de este procedimiento es fundamental para asegurar una extracción objetiva de información. La delineación automática de regiones anatómicas se realiza mediante el registro tanto contra atlas como contra otros estudios de imagen de distintos sujetos. Sin embargo, los cambios patológicos asociados al DCA están siempre asociados a anormalidades de intensidad y/o cambios en la localización de las estructuras. Este hecho provoca que los algoritmos de registro tradicionales basados en intensidad no funcionen correctamente y requieran la intervención del clínico para seleccionar ciertos puntos (que en esta tesis hemos denominado puntos singulares). Además estos algoritmos tampoco permiten que se produzcan deformaciones grandes deslocalizadas. Hecho que también puede ocurrir ante la presencia de lesiones provocadas por un accidente cerebrovascular (ACV) o un traumatismo craneoencefálico (TCE). Esta tesis se centra en el diseño, desarrollo e implementación de una metodología para la detección automática de estructuras lesionadas que integra algoritmos cuyo objetivo principal es generar resultados que puedan ser reproducibles y objetivos. Esta metodología se divide en cuatro etapas: pre-procesado, identificación de puntos singulares, registro y detección de lesiones. Los trabajos y resultados alcanzados en esta tesis son los siguientes: Pre-procesado. En esta primera etapa el objetivo es homogeneizar todos los datos de entrada con el objetivo de poder extraer conclusiones válidas de los resultados obtenidos. Esta etapa, por tanto, tiene un gran impacto en los resultados finales. Se compone de tres operaciones: eliminación del cráneo, normalización en intensidad y normalización espacial. Identificación de puntos singulares. El objetivo de esta etapa es automatizar la identificación de puntos anatómicos (puntos singulares). Esta etapa equivale a la identificación manual de puntos anatómicos por parte del clínico, permitiendo: identificar un mayor número de puntos lo que se traduce en mayor información; eliminar el factor asociado a la variabilidad inter-sujeto, por tanto, los resultados son reproducibles y objetivos; y elimina el tiempo invertido en el marcado manual de puntos. Este trabajo de investigación propone un algoritmo de identificación de puntos singulares (descriptor) basado en una solución multi-detector y que contiene información multi-paramétrica: espacial y asociada a la intensidad. Este algoritmo ha sido contrastado con otros algoritmos similares encontrados en el estado del arte. Registro. En esta etapa se pretenden poner en concordancia espacial dos estudios de imagen de sujetos/pacientes distintos. El algoritmo propuesto en este trabajo de investigación está basado en descriptores y su principal objetivo es el cálculo de un campo vectorial que permita introducir deformaciones deslocalizadas en la imagen (en distintas regiones de la imagen) y tan grandes como indique el vector de deformación asociado. El algoritmo propuesto ha sido comparado con otros algoritmos de registro utilizados en aplicaciones de neuroimagen que se utilizan con estudios de sujetos control. Los resultados obtenidos son prometedores y representan un nuevo contexto para la identificación automática de estructuras. Identificación de lesiones. En esta última etapa se identifican aquellas estructuras cuyas características asociadas a la localización espacial y al área o volumen han sido modificadas con respecto a una situación de normalidad. Para ello se realiza un estudio estadístico del atlas que se vaya a utilizar y se establecen los parámetros estadísticos de normalidad asociados a la localización y al área. En función de las estructuras delineadas en el atlas, se podrán identificar más o menos estructuras anatómicas, siendo nuestra metodología independiente del atlas seleccionado. En general, esta tesis doctoral corrobora las hipótesis de investigación postuladas relativas a la identificación automática de lesiones utilizando estudios de imagen médica estructural, concretamente estudios de resonancia magnética. Basándose en estos cimientos, se han abrir nuevos campos de investigación que contribuyan a la mejora en la detección de lesiones. ABSTRACT Brain injury constitutes a serious social and health problem of increasing magnitude and of great diagnostic and therapeutic complexity. Its high incidence and survival rate, after the initial critical phases, makes it a prevalent problem that needs to be addressed. In particular, according to the World Health Organization (WHO), brain injury will be among the 10 most common causes of disability by 2020. Neurorehabilitation improves both cognitive and functional deficits and increases the autonomy of brain injury patients. The incorporation of new technologies to the neurorehabilitation tries to reach a new paradigm focused on designing intensive, personalized, monitored and evidence-based treatments. Since these four characteristics ensure the effectivity of treatments. Contrary to most medical disciplines, it is not possible to link symptoms and cognitive disorder syndromes, to assist the therapist. Currently, neurorehabilitation treatments are planned considering the results obtained from a neuropsychological assessment battery, which evaluates the functional impairment of each cognitive function (memory, attention, executive functions, etc.). The research line, on which this PhD falls under, aims to design and develop a cognitive profile based not only on the results obtained in the assessment battery, but also on theoretical information that includes both anatomical structures and functional relationships and anatomical information obtained from medical imaging studies, such as magnetic resonance. Therefore, the cognitive profile used to design these treatments integrates information personalized and evidence-based. Neuroimaging techniques represent an essential tool to identify lesions and generate this type of cognitive dysfunctional profiles. Manual delineation of brain anatomical regions is the classical approach to identify brain anatomical regions. Manual approaches present several problems related to inconsistencies across different clinicians, time and repeatability. Automated delineation is done by registering brains to one another or to a template. However, when imaging studies contain lesions, there are several intensity abnormalities and location alterations that reduce the performance of most of the registration algorithms based on intensity parameters. Thus, specialists may have to manually interact with imaging studies to select landmarks (called singular points in this PhD) or identify regions of interest. These two solutions have the same inconvenient than manual approaches, mentioned before. Moreover, these registration algorithms do not allow large and distributed deformations. This type of deformations may also appear when a stroke or a traumatic brain injury (TBI) occur. This PhD is focused on the design, development and implementation of a new methodology to automatically identify lesions in anatomical structures. This methodology integrates algorithms whose main objective is to generate objective and reproducible results. It is divided into four stages: pre-processing, singular points identification, registration and lesion detection. Pre-processing stage. In this first stage, the aim is to standardize all input data in order to be able to draw valid conclusions from the results. Therefore, this stage has a direct impact on the final results. It consists of three steps: skull-stripping, spatial and intensity normalization. Singular points identification. This stage aims to automatize the identification of anatomical points (singular points). It involves the manual identification of anatomical points by the clinician. This automatic identification allows to identify a greater number of points which results in more information; to remove the factor associated to inter-subject variability and thus, the results are reproducible and objective; and to eliminate the time spent on manual marking. This PhD proposed an algorithm to automatically identify singular points (descriptor) based on a multi-detector approach. This algorithm contains multi-parametric (spatial and intensity) information. This algorithm has been compared with other similar algorithms found on the state of the art. Registration. The goal of this stage is to put in spatial correspondence two imaging studies of different subjects/patients. The algorithm proposed in this PhD is based on descriptors. Its main objective is to compute a vector field to introduce distributed deformations (changes in different imaging regions), as large as the deformation vector indicates. The proposed algorithm has been compared with other registration algorithms used on different neuroimaging applications which are used with control subjects. The obtained results are promising and they represent a new context for the automatic identification of anatomical structures. Lesion identification. This final stage aims to identify those anatomical structures whose characteristics associated to spatial location and area or volume has been modified with respect to a normal state. A statistical study of the atlas to be used is performed to establish which are the statistical parameters associated to the normal state. The anatomical structures that may be identified depend on the selected anatomical structures identified on the atlas. The proposed methodology is independent from the selected atlas. Overall, this PhD corroborates the investigated research hypotheses regarding the automatic identification of lesions based on structural medical imaging studies (resonance magnetic studies). Based on these foundations, new research fields to improve the automatic identification of lesions in brain injury can be proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cereals microstructure is one of the primary quality attributes of cereals. Cereals rehydration and milk diffusion depends on such microstructure and thus, the crispiness and the texture, which will make it more palatable for the final consumer. Magnetic Resonance Imaging (MRI) is a very powerful topographic tool since acquisition parameter leads to a wide possibility for identifying textures, structures and liquids mobility. It is suited for non-invasive imaging of water and fats. Rehydration and diffusion cereals processes were measured by MRI at different times and using two different kinds of milk, varying their fat level. Several images were obtained. A combination of textural analysis (based on the analysis of histograms) and segmentation methods (in order to understand the rehydration level of each variety of cereals) were performed. According to the rehydration level, no advisable clustering behavior was found. Nevertheless, some differences were noticeable between the coating, the type of milk and the variety of cereals

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is a preliminary studio of the possibility of assess a relationship between solar radiation and watercore development on apple fruit, during maturation, using a non destructive method such as Magnetic Resonance Imaging (MRI). For such purpose, several low cost solar radiation sensors were designed for the trial and placed at 2 different heights (1.5 and 2.5 m) on 6 adult ?Esperiega? apple trees, in a commercial orchard in Ademuz (Valencia). Sensors were connected along 27 days, during the end of the growth period and start of the fruit maturation process, and radiation measurements of the a-Si sensors were recorded every 1 minute. At the end of this period, fruits from the upper and the lower part of the canopy of each tree were harvested. In all, 152 apples were collected and images with MRI. A Principal Component Analysis, perfomed over the histograms of the images, as well as segmentation methods were performed on the MR images in order to find a pattern involving solar radiation and watercore incidence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physico-chemical and organoleptic characteristics of food depend largely on the microscopic level distribution of gases and water, and connectivity and mobility through the pores. Microstructural characterization of food can be accomplished by Magnetic Resonance Imaging (MRI) and Nuclear Magnetic Spectroscopy (NMR) combined with the application of methods of dissemination and multidimensional relaxometry. In this work, funded by the EC Project InsideFood, several artificial food models, based on foams and gels were studied using MRI and 2D relaxometry. Two different kinds of foams were used: a sugarless and a sugar foam. Then, a half of a syringe was filled with the sugarless foam and the other half with the sugar foam. Then, MRI and NMR experiments were performed and the sample evolution was observed along 3 days in order to quantify macrostructural changes through proton density images and microstructural ones using T1T2 maps, using an inversion CPMG sequence. On the proton density images it may be seen that after 16 hours it was possible to differentiate the macrostructural changes, as the apparition of free water due to a syneresis phenomenon. On the interface it can be seen a brighter area after 16 hours, due to the occurrence of free water. Moreover, thanks to the bidimensional relaxometry (T1-T2) it was possible to differentiate among microscopic changes. Differences between the pores size can be observed as well as the microstructure evolution after 30.5 hours, as a consequence differences are shown on free water redistribution through larger pores and capillarity phenomena between both foams.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

tWatercore distribution inside apple fruit (block or radial), and its incidence (% of tissue) were relatedto the effect of solar radiation inside the canopy as measured by a set of low-cost irradiation sensors.221 samples were harvested in two seasons from the top and the bottom of the canopy and submittedto the non-invasive and non-destructive technique of magnetic resonance imaging (MRI) in order toobtain 20 inner tomography slices from each fruit and analyze the damaged areas using an interactive3D segmentation method. The number of fruit corresponding to each type of damage and the relevantpercentage were calculated and it was found that apples from the top of the tree were mainly of the radialtype (84%) and had more watercore (approx. 5% more) than apples from the bottom (65% radial). From theimage segmentation, the Euler number, a morphometric parameter, was extracted from the segmentedimages and related to the type of watercore symptoms. Apples with block watercore were grouped inEuler numbers between −400 and 400 with a small evolution. For apples with radial development, theEuler number was highly negative: up to −1439. Significant differences were also found regarding sugarcomposition, with higher fructose and total sugar contents in apples from the upper canopy, compared tothose in the lower canopy location. In the seasons studied (2011 and 2012), significantly higher sorbitoland lower sucrose and fructose contents were found in watercore-affected tissue compared to the healthytissue of affected apples and also compared to healthy apples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since Januarv 1946 a wade EC Project entitled "Mealiness in fruits Consumers perception and means for detection is being carried out. Mealiness is a sensory attribute that cannot be defined by a single parameter but through a combination of variables (multidimensional structure) Previous studies propose the definition of mealiness as the lack of crispiness of hardness and of juiciness. A destructive instrumental procedure combined with a integration technique has been already developed enabling to identify mealy fruits by destructive instrumental means use other contributions of Barreiro and Ortiz to this Ag Eng 98. Current aims .are focused on establishing non destructive tests for mealiness assessment. Magnetic resonance Imaging (MRI) makes use of the magnetic properties that some atomic nuclei have. especially hidrogen nuclei from water molecules to obtain high quality images in the field of internal quality evaluation the MRI has been used to assess internal injury due to conservation as o treatments as chilling injury un Persimmons Clark&Forbes (1994) and water-core in apples (Wang et al. 1998. In the case of persimmons the chilling injury is described as an initial tissue breakdown and lack of cohesion between cells followed by formation of a firm gel and by a lack of juiciness without changes in the total amount ol water content. Also a browning of the flesh is indicated (Clark&Forhes 1994). This definition fits into the previous description of mealiness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we present a novel method to compensate the movement in images acquired during free breathing using first-pass gadolinium enhanced, myocardial perfusion magnetic resonance imaging (MRI). First, we use independent component analysis (ICA) to identify the optimal number of independent components (ICs) that separate the breathing motion from the intensity change induced by the contrast agent. Then, synthetic images are created by recombining the ICs, but other then in previously published work (Milles et al. 2008), we omit the component related to motion, and therefore, the resulting reference image series is free of motion. Motion compensation is then achieved by using a multi-pass non-rigid image registration scheme. We tested our method on 15 distinct image series (5 patients) consisting of 58 images each and we validated our method by comparing manually tracked intensity profiles of the myocardial sections to automatically generated ones before and after registration. The average correlation to the manually obtained curves before registration 0:89 0:11 was increased to 0:98 0:02

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La planificación pre-operatoria se ha convertido en una tarea esencial en cirugías y terapias de marcada complejidad, especialmente aquellas relacionadas con órgano blando. Un ejemplo donde la planificación preoperatoria tiene gran interés es la cirugía hepática. Dicha planificación comprende la detección e identificación precisa de las lesiones individuales y vasos así como la correcta segmentación y estimación volumétrica del hígado funcional. Este proceso es muy importante porque determina tanto si el paciente es un candidato adecuado para terapia quirúrgica como la definición del abordaje a seguir en el procedimiento. La radioterapia de órgano blando es un segundo ejemplo donde la planificación se requiere tanto para la radioterapia externa convencional como para la radioterapia intraoperatoria. La planificación comprende la segmentación de tumor y órganos vulnerables y la estimación de la dosimetría. La segmentación de hígado funcional y la estimación volumétrica para planificación de la cirugía se estiman habitualmente a partir de imágenes de tomografía computarizada (TC). De igual modo, en la planificación de radioterapia, los objetivos de la radiación se delinean normalmente sobre TC. Sin embargo, los avances en las tecnologías de imagen de resonancia magnética (RM) están ofreciendo progresivamente ventajas adicionales. Por ejemplo, se ha visto que el ratio de detección de metástasis hepáticas es significativamente superior en RM con contraste Gd–EOB–DTPA que en TC. Por tanto, recientes estudios han destacado la importancia de combinar la información de TC y RM para conseguir el mayor nivel posible de precisión en radioterapia y para facilitar una descripción precisa de las lesiones del hígado. Con el objetivo de mejorar la planificación preoperatoria en ambos escenarios se precisa claramente de un algoritmo de registro no rígido de imagen. Sin embargo, la gran mayoría de sistemas comerciales solo proporcionan métodos de registro rígido. Las medidas de intensidad de voxel han demostrado ser criterios de similitud de imágenes robustos, y, entre ellas, la Información Mutua (IM) es siempre la primera elegida en registros multimodales. Sin embargo, uno de los principales problemas de la IM es la ausencia de información espacial y la asunción de que las relaciones estadísticas entre las imágenes son homogéneas a lo largo de su domino completo. La hipótesis de esta tesis es que la incorporación de información espacial de órganos al proceso de registro puede mejorar la robustez y calidad del mismo, beneficiándose de la disponibilidad de las segmentaciones clínicas. En este trabajo, se propone y valida un esquema de registro multimodal no rígido 3D usando una nueva métrica llamada Información Mutua Centrada en el Órgano (Organ-Focused Mutual Information metric (OF-MI)) y se compara con la formulación clásica de la Información Mutua. Esto permite mejorar los resultados del registro en áreas problemáticas incorporando información regional al criterio de similitud, beneficiándose de la disponibilidad real de segmentaciones en protocolos estándares clínicos, y permitiendo que la dependencia estadística entre las dos modalidades de imagen difiera entre órganos o regiones. El método propuesto se ha aplicado al registro de TC y RM con contraste Gd–EOB–DTPA así como al registro de imágenes de TC y MR para planificación de radioterapia intraoperatoria rectal. Adicionalmente, se ha desarrollado un algoritmo de apoyo de segmentación 3D basado en Level-Sets para la incorporación de la información de órgano en el registro. El algoritmo de segmentación se ha diseñado específicamente para la estimación volumétrica de hígado sano funcional y ha demostrado un buen funcionamiento en un conjunto de imágenes de TC abdominales. Los resultados muestran una mejora estadísticamente significativa de OF-MI comparada con la Información Mutua clásica en las medidas de calidad de los registros; tanto con datos simulados (p<0.001) como con datos reales en registro hepático de TC y RM con contraste Gd– EOB–DTPA y en registro para planificación de radioterapia rectal usando OF-MI multi-órgano (p<0.05). Adicionalmente, OF-MI presenta resultados más estables con menor dispersión que la Información Mutua y un comportamiento más robusto con respecto a cambios en la relación señal-ruido y a la variación de parámetros. La métrica OF-MI propuesta en esta tesis presenta siempre igual o mayor precisión que la clásica Información Mutua y consecuentemente puede ser una muy buena alternativa en aplicaciones donde la robustez del método y la facilidad en la elección de parámetros sean particularmente importantes. Abstract Pre-operative planning has become an essential task in complex surgeries and therapies, especially for those affecting soft tissue. One example where soft tissue preoperative planning is of high interest is liver surgery. It involves the accurate detection and identification of individual liver lesions and vessels as well as the proper functional liver segmentation and volume estimation. This process is very important because it determines whether the patient is a suitable candidate for surgical therapy and the type of procedure. Soft tissue radiation therapy is a second example where planning is required for both conventional external and intraoperative radiotherapy. It involves the segmentation of the tumor target and vulnerable organs and the estimation of the planned dose. Functional liver segmentations and volume estimations for surgery planning are commonly estimated from computed tomography (CT) images. Similarly, in radiation therapy planning, targets to be irradiated and healthy and vulnerable tissues to be protected from irradiation are commonly delineated on CT scans. However, developments in magnetic resonance imaging (MRI) technology are progressively offering advantages. For instance, the hepatic metastasis detection rate has been found to be significantly higher in Gd–EOB–DTPAenhanced MRI than in CT. Therefore, recent studies highlight the importance of combining the information from CT and MRI to achieve the highest level of accuracy in radiotherapy and to facilitate accurate liver lesion description. In order to improve those two soft tissue pre operative planning scenarios, an accurate nonrigid image registration algorithm is clearly required. However, the vast majority of commercial systems only provide rigid registration. Voxel intensity measures have been shown to be robust measures of image similarity, and among them, Mutual Information (MI) is always the first candidate in multimodal registrations. However, one of the main drawbacks of Mutual Information is the absence of spatial information and the assumption that statistical relationships between images are the same over the whole domain of the image. The hypothesis of the present thesis is that incorporating spatial organ information into the registration process may improve the registration robustness and quality, taking advantage of the clinical segmentations availability. In this work, a multimodal nonrigid 3D registration framework using a new Organ- Focused Mutual Information metric (OF-MI) is proposed, validated and compared to the classical formulation of the Mutual Information (MI). It allows improving registration results in problematic areas by adding regional information into the similitude criterion taking advantage of actual segmentations availability in standard clinical protocols and allowing the statistical dependence between the two modalities differ among organs or regions. The proposed method is applied to CT and T1 weighted delayed Gd–EOB–DTPA-enhanced MRI registration as well as to register CT and MRI images in rectal intraoperative radiotherapy planning. Additionally, a 3D support segmentation algorithm based on Level-Sets has been developed for the incorporation of the organ information into the registration. The segmentation algorithm has been specifically designed for the healthy and functional liver volume estimation demonstrating good performance in a set of abdominal CT studies. Results show a statistical significant improvement of registration quality measures with OF-MI compared to MI with both simulated data (p<0.001) and real data in liver applications registering CT and Gd–EOB–DTPA-enhanced MRI and in registration for rectal radiotherapy planning using multi-organ OF-MI (p<0.05). Additionally, OF-MI presents more stable results with smaller dispersion than MI and a more robust behavior with respect to SNR changes and parameters variation. The proposed OF-MI always presents equal or better accuracy than the classical MI and consequently can be a very convenient alternative within applications where the robustness of the method and the facility to choose the parameters are particularly important.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Images acquired during free breathing using first-pass gadolinium-enhanced myocardial perfusion magnetic resonance imaging (MRI) exhibit a quasiperiodic motion pattern that needs to be compensated for if a further automatic analysis of the perfusion is to be executed. In this work, we present a method to compensate this movement by combining independent component analysis (ICA) and image registration: First, we use ICA and a time?frequency analysis to identify the motion and separate it from the intensity change induced by the contrast agent. Then, synthetic reference images are created by recombining all the independent components but the one related to the motion. Therefore, the resulting image series does not exhibit motion and its images have intensities similar to those of their original counterparts. Motion compensation is then achieved by using a multi-pass image registration procedure. We tested our method on 39 image series acquired from 13 patients, covering the basal, mid and apical areas of the left heart ventricle and consisting of 58 perfusion images each. We validated our method by comparing manually tracked intensity profiles of the myocardial sections to automatically generated ones before and after registration of 13 patient data sets (39 distinct slices). We compared linear, non-linear, and combined ICA based registration approaches and previously published motion compensation schemes. Considering run-time and accuracy, a two-step ICA based motion compensation scheme that first optimizes a translation and then for non-linear transformation performed best and achieves registration of the whole series in 32 ± 12 s on a recent workstation. The proposed scheme improves the Pearsons correlation coefficient between manually and automatically obtained time?intensity curves from .84 ± .19 before registration to .96 ± .06 after registration

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los alimentos son sistemas complejos, formados por diversas estructuras a diferentes escalas: macroscópica y microscópica. Muchas propiedades de los alimentos, que son importantes para su procesamiento, calidad y tratamiento postcosecha, están relacionados con su microestructura. La presente tesis doctoral propone una metodología completa para la determinación de la estructura de alimentos desde un punto de vista multi-escala, basándose en métodos de Resonancia Magnética Nuclear (NMR). Las técnicas de NMR son no invasivas y no destructivas y permiten el estudio tanto de macro- como de microestructura. Se han utilizado distintos procedimientos de NMR dependiendo del nivel que se desea estudiar. Para el nivel macroestructural, la Imagen de Resonancia Magnética (MRI) ha resultado ser muy útil para la caracterización de alimentos. Para el estudio microestructural, la MRI requiere altos tiempos de adquisición, lo que hace muy difícil la transferencia de esta técnica a aplicaciones en industria. Por tanto, la optimización de procedimientos de NMR basados en secuencias relaxometría 2D T1/T2 ha resultado ser una estrategia primordial en esta tesis. Estos protocolos de NMR se han implementado satisfactoriamente por primera vez en alto campo magnético. Se ha caracterizado la microestructura de productos alimentarios enteros por primera vez utilizando este tipo de protocolos. Como muestras, se han utilizado dos tipos de productos: modelos de alimentos y alimentos reales (manzanas). Además, como primer paso para su posterior implementación en la industria agroalimentaria, se ha mejorado una línea transportadora, especialmente diseñada para trabajar bajo condiciones de NMR en trabajos anteriores del grupo LPF-TAGRALIA. Se han estudiado y seleccionado las secuencias más rápidas y óptimas para la detección de dos tipos de desórdenes internos en manzanas: vitrescencia y roturas internas. La corrección de las imágenes en movimiento se realiza en tiempo real. Asimismo, se han utilizado protocolos de visión artificial para la clasificación automática de manzanas potencialmente afectadas por vitrescencia. El presente documento está dividido en diferentes capítulos: el Capítulo 2 explica los antecedentes de la presente tesis y el marco del proyecto en el que se ha desarrollado. El Capítulo 3 recoge el estado del arte. El Capítulo 4 establece los objetivos de esta tesis doctoral. Los resultados se dividen en cinco sub-secciones (dentro del Capítulo 5) que corresponden con los trabajos publicados bien en revistas revisadas por pares, bien en congresos internacionales o bien como capítulos de libros revisados por pares. La Sección 5.1. es un estudio del desarrollo de la vitrescencia en manzanas mediante MRI y lo relaciona con la posición de la fruta dentro de la copa del árbol. La Sección 5.2 presenta un trabajo sobre macro- y microestructura en modelos de alimentos. La Sección 5.3 es un artículo en revisión en una revista revisada por pares, en el que se hace un estudio microestrcutural no destructivo mediante relaxometría 2D T1/T2. la Sección 5.4, hace una comparación entre manzanas afectadas por vitrescencia mediante dos técnicas: tomografía de rayos X e MRI, en manzana. Por último, en la Sección 5.5 se muestra un trabajo en el que se hace un estudio de secuencias de MRI en línea para la evaluación de calidad interna en manzanas. Los siguientes capítulos ofrecen una discusión y conclusiones (Capítulo 6 y 7 respectivamente) de todos los capítulos de esta tesis doctoral. Finalmente, se han añadido tres apéndices: el primero con una introducción de los principios básicos de resonancia magnética nuclear (NMR) y en los otros dos, se presentan sendos estudios sobre el efecto de las fibras en la rehidratación de cereales de desayuno extrusionados, mediante diversas técnicas. Ambos trabajos se presentaron en un congreso internacional. Los resultados más relevantes de la presente tesis doctoral, se pueden dividir en tres grandes bloques: resultados sobre macroestructura, resultados sobre microestructura y resultados sobre MRI en línea. Resultados sobre macroestructura: - La imagen de resonancia magnética (MRI) se aplicó satisfactoriamente para la caracterización de macroestructura. En particular, la reconstrucción 3D de imágenes de resonancia magnética permitió identificar y caracterizar dos tipos distintos de vitrescencia en manzanas: central y radial, que se caracterizan por el porcentaje de daño y la conectividad (número de Euler). - La MRI proveía un mejor contraste para manzanas afectadas por vitrescencia que las imágenes de tomografía de rayos X (X-Ray CT), como se pudo verificar en muestras idénticas de manzana. Además, el tiempo de adquisición de la tomografía de rayos X fue alrededor de 12 veces mayor (25 minutos) que la adquisición de las imágenes de resonancia magnética (2 minutos 2 segundos). Resultados sobre microestructura: - Para el estudio de microestructura (nivel subcelular) se utilizaron con éxito secuencias de relaxometría 2D T1/T2. Estas secuencias se usaron por primera vez en alto campo y sobre piezas de alimento completo, convirtiéndose en una forma no destructiva de llevar a cabo estudios de microestructura. - El uso de MRI junto con relaxometría 2D T1/T2 permite realizar estudios multiescala en alimentos de forma no destructiva. Resultados sobre MRI en línea: - El uso de imagen de resonancia magnética en línea fue factible para la identificación de dos tipos de desórdenes internos en manzanas: vitrescencia y podredumbre interna. Las secuencias de imagen tipo FLASH resultaron adecuadas para la identificación en línea de vitrescencia en manzanas. Se realizó sin selección de corte, debido a que la vitrescencia puede desarrollarse en cualquier punto del volumen de la manzana. Se consiguió reducir el tiempo de adquisición, de modo que se llegaron a adquirir 1.3 frutos por segundos (758 ms por fruto). Las secuencias de imagen tipo UFLARE fueron adecuadas para la detección en línea de la podredumbre interna en manzanas. En este caso, se utilizó selección de corte, ya que se trata de un desorden que se suele localizar en la parte central del volumen de la manzana. Se consiguió reducir el tiempo de adquisicón hasta 0.67 frutos por segundo (1475 ms por fruto). En ambos casos (FLASH y UFLARE) fueron necesarios algoritmos para la corrección del movimiento de las imágenes en tiempo real. ABSTRACT Food is a complex system formed by several structures at different scales: macroscopic and microscopic. Many properties of foods that are relevant to process engineering or quality and postharvest treatments are related to their microstructure. This Ph.D Thesis proposes a complete methodology for food structure determination, in a multiscale way, based on the Nuclear Magnetic Resonance (NMR) phenomenon since NMR techniques are non-invasive and non-destructive, and allow both, macro- and micro-structure study. Different NMR procedures are used depending on the structure level under study. For the macrostructure level, Magnetic Resonance Imaging (MRI) revealed its usefulness for food characterization. For microstructure insight, MRI required high acquisition times, which is a hindrance for transference to industry applications. Therefore, optimization of NMR procedures based on T1/T2 relaxometry sequences was a key strategy in this Thesis. These NMR relaxometry protocols, are successfully implemented in high magnetic field. Microstructure of entire food products have been characterized for the first time using these protocols. Two different types of food products have been studied: food models and actual food (apples). Furthermore, as a first step for the food industry implementation, a grading line system, specially designed for working under NMR conditions in previous works of the LPF-TAGRALIA group, is improved. The study and selection of the most suitable rapid sequence to detect two different types of disorders in apples (watercore and internal breakdown) is performed and the real time image motion correction is applied. In addition, artificial vision protocols for the automatic classification of apples potentially affected by watercore are applied. This document is divided into seven different chapters: Chapter 2 explains the thesis background and the framework of the project in which it has been worked. Chapter 3 comprises the state of the art. Chapter 4 establishes de objectives of this Ph.D thesis. The results are divided into five different sections (in Chapter 5) that correspond to published peered reviewed works. Section 5.1 assesses the watercore development in apples with MRI and studies the effect of fruit location in the canopy. Section 5.2 is an MRI and 2D relaxometry study for macro- and microstructure assessment in food models. Section 5.3 is a non-destructive microstructural study using 2D T1/T2 relaxometry on watercore affected apples. Section 5.4 makes a comparison of X-ray CT and MRI on watercore disorder of different apple cultivars. Section 5.5, that is a study of online MRI sequences for the evaluation of apple internal quality. The subsequent chapters offer a general discussion and conclusions (Chapter 6 and Chapter 7 respectively) of all the works performed in the frame of this Ph.D thesis (two peer reviewed journals, one book chapter and one international congress).Finally, three appendices are included in which an introduction to NMR principles is offered and two published proceedings regarding the effect of fiber on the rehydration of extruded breakfast cereal are displayed. The most relevant results can be summarized into three sections: results on macrostructure, results on microstructure and results on on-line MRI. Results on macrostructure: - MRI was successfully used for macrostructure characterization. Indeed, 3D reconstruction of MRI in apples allows to identify two different types of watercore (radial and block), which are characterized by the percentage of damage and the connectivity (Euler number). - MRI provides better contrast for watercore than X-Ray CT as verified on identical samples. Furthermore, X-Ray CT images acquisition time was around 12 times higher (25 minutes) than MRI acquisition time (2 minutes 2 seconds). Results on microstructure: - 2D T1/T2 relaxometry were successfully applied for microstructure (subcellular level) characterization. 2D T1/T2 relaxometry sequences have been applied for the first time on high field for entire food pieces, being a non-destructive way to achieve microstructure study. - The use of MRI together with 2D T1/T2 relaxometry sequences allows a non-destructive multiscale study of food. Results on on-line MRI: - The use of on-line MRI was successful for the identification of two different internal disorders in apples: watercore and internal breakdown. FLASH imaging was a suitable technique for the on-line detection of watercore disorder in apples, with no slice selection, since watercore is a physiological disorder that may be developed anywhere in the apple volume. 1.3 fruits were imaged per second (768 ms per fruit). UFLARE imaging is a suitable sequence for the on-line detection of internal breakdown disorder in apples. Slice selection was used, as internal breakdown is usually located in the central slice of the apple volume. 0.67 fruits were imaged per second (1475 ms per fruit). In both cases (FLASH and UFLARE) motion correction was performed in real time, during the acquisition of the images.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mealiness (woolliness in peaches) is a negative attribute of sensory texture that combines the sensation of a desegregated tissue with the sensation of lack of juiciness. In this study, 24 apples cv. Top Red and 8 peaches cv. Maycrest, submitted to 3 and 2 different storage conditions respectively have been tested by mechanical and MRI techniques to assess mealiness. With this study, the results obtained on apples in a previous work have been validated using mathematical features from the histograms of the T2 maps: more skewed and the presence of a tail in mealy apples, similar to internal breakdown. In peaches, MRI techniques can also be used to identify woolly fruits. Not all the changes found in the histograms of woolly peaches are similar from those observed in mealy apples pointing to a different underlying physiological change in both disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction Diffusion weighted Imaging (DWI) techniques are able to measure, in vivo and non-invasively, the diffusivity of water molecules inside the human brain. DWI has been applied on cerebral ischemia, brain maturation, epilepsy, multiple sclerosis, etc. [1]. Nowadays, there is a very high availability of these images. DWI allows the identification of brain tissues, so its accurate segmentation is a common initial step for the referred applications. Materials and Methods We present a validation study on automated segmentation of DWI based on the Gaussian mixture and hidden Markov random field models. This methodology is widely solved with iterative conditional modes algorithm, but some studies suggest [2] that graph-cuts (GC) algorithms improve the results when initialization is not close to the final solution. We implemented a segmentation tool integrating ITK with a GC algorithm [3], and a validation software using fuzzy overlap measures [4]. Results Segmentation accuracy of each tool is tested against a gold-standard segmentation obtained from a T1 MPRAGE magnetic resonance image of the same subject, registered to the DWI space. The proposed software shows meaningful improvements by using the GC energy minimization approach on DTI and DSI (Diffusion Spectrum Imaging) data. Conclusions The brain tissues segmentation on DWI is a fundamental step on many applications. Accuracy and robustness improvements are achieved with the proposed software, with high impact on the application’s final result.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate detection of liver lesions is of great importance in hepatic surgery planning. Recent studies have shown that the detection rate of liver lesions is significantly higher in gadoxetic acid-enhanced magnetic resonance imaging (Gd–EOB–DTPA-enhanced MRI) than in contrast-enhanced portal-phase computed tomography (CT); however, the latter remains essential because of its high specificity, good performance in estimating liver volumes and better vessel visibility. To characterize liver lesions using both the above image modalities, we propose a multimodal nonrigid registration framework using organ-focused mutual information (OF-MI). This proposal tries to improve mutual information (MI) based registration by adding spatial information, benefiting from the availability of expert liver segmentation in clinical protocols. The incorporation of an additional information channel containing liver segmentation information was studied. A dataset of real clinical images and simulated images was used in the validation process. A Gd–EOB–DTPA-enhanced MRI simulation framework is presented. To evaluate results, warping index errors were calculated for the simulated data, and landmark-based and surface-based errors were calculated for the real data. An improvement of the registration accuracy for OF-MI as compared with MI was found for both simulated and real datasets. Statistical significance of the difference was tested and confirmed in the simulated dataset (p < 0.01).