2 resultados para Macro scale distributions

em Universidad Politécnica de Madrid


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Protein interaction networks have become a tool to study biological processes, either for predicting molecular functions or for designing proper new drugs to regulate the main biological interactions. Furthermore, such networks are known to be organized in sub-networks of proteins contributing to the same cellular function. However, the protein function prediction is not accurate and each protein has traditionally been assigned to only one function by the network formalism. By considering the network of the physical interactions between proteins of the yeast together with a manual and single functional classification scheme, we introduce a method able to reveal important information on protein function, at both micro- and macro-scale. In particular, the inspection of the properties of oscillatory dynamics on top of the protein interaction network leads to the identification of misclassification problems in protein function assignments, as well as to unveil correct identification of protein functions. We also demonstrate that our approach can give a network representation of the meta-organization of biological processes by unraveling the interactions between different functional classes

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lacunarity as a means of quantifying textural properties of spatial distributions suggests a classification into three main classes of the most abundant soils that cover 92% of Europe. Soils with a well-defined self-similar structure of the linear class are related to widespread spatial patterns that are nondominant but ubiquitous at continental scale. Fractal techniques have been increasingly and successfully applied to identify and describe spatial patterns in natural sciences. However, objects with the same fractal dimension can show very different optical properties because of their spatial arrangement. This work focuses primary attention on the geometrical structure of the geographical patterns of soils in Europe. We made use of the European Soil Database to estimate lacunarity indexes of the most abundant soils that cover 92% of the surface of Europe and investigated textural properties of their spatial distribution. We observed three main classes corresponding to three different patterns that displayed the graphs of lacunarity functions, that is, linear, convex, and mixed. They correspond respectively to homogeneous or self-similar, heterogeneous or clustered and those in which behavior can change at different ranges of scales. Finally, we discuss the pedological implications of that classification.