6 resultados para Machine-tool industry
em Universidad Politécnica de Madrid
Resumo:
This paper presents an initiative for monitoring the competence acquisition by a team of students with different backgrounds facing the experience of being working by projects and in a project. These students are graduated bachelor engineering are inexperienced in the project management field and they play this course on a time-shared manner along with other activities. The goal of this experience is to increase the competence levels acquired by using an structured web based portfolio tool helping to reinforce how relevant different project management approaches can result for final products and how important it becomes to maintain the integration along the project. Monitoring is carried out by means of have a look on how the work is being done and measuring different technical parameters per participant. The use of this information could make possible to bring additional information to the students involved in terms of their individual competencies and the identification of new opportunities of personal improvement. These capabilities are strongly requested by companies in their daily work as well as they can be very convenient too for students when they try to organize their PhD work.
Resumo:
GRC is a cementitious composite material made up of a cement mortar matrix and chopped glass fibers. Due to its outstanding mechanical properties, GRC has been widely used to produce cladding panels and some civil engineering elements. Impact failure of cladding panels made of GRC may occur during production if some tool falls onto the panel, due to stone or other objects impacting at low velocities or caused by debris projected after a blast. Impact failure of a front panel of a building may have not only an important economic value but also human lives may be at risk if broken pieces of the panel fall from the building to the pavement. Therefore, knowing GRC impact strength is necessary to prevent economic costs and putting human lives at risk. One-stage light gas gun is an impact test machine capable of testing different materials subjected to impact loads. An experimental program was carried out, testing GRC samples of five different formulations, commonly used in building industry. Steel spheres were shot at different velocities on square GRC samples. The residual velocity of the projectiles was obtained both using a high speed camera with multiframe exposure and measuring the projectile’s penetration depth in molding clay blocks. Tests were performed on young and artificially aged GRC samples to compare GRC’s behavior when subjected to high strain rates. Numerical simulations using a hydrocode were made to analyze which parameters are most important during an impact event. GRC impact strength was obtained from test results. Also, GRC’s embrittlement, caused by GRC aging, has no influence on GRC impact behavior due to the small size of the projectile. Also, glass fibers used in GRC production only maintain GRC panels’ integrity but have no influence on GRC’s impact strength. Numerical models have reproduced accurately impact tests.
Resumo:
Selling on credit is rather frequent in Mediterranean countries. Its generalized use can lead to excessive enlargements of the payment periods and consequently can deteriorate the profitability of firms. In spite of the relevance of this problem there are few empirical researches. This work intends to fill this gap and to shed light on the factors related to the extension of trade credit. In the theoretical and empirical literature, different motives have been proposed to explain this issue: a mechanism to reduce transaction costs, a financial alternative to the bank system and an additional tool to improve commercial activities. To contrast these ideas a panel of 388 firms of the Spanish agrofood industry has been taken, and static and dynamic regression models have been estimated by using robust methods to heteroskedasticity, autocorrelation and endogeneity of the explanatory variables. The results confirm that trade credit receivable is associated with more active firms and with cheaper bank financing. Other factors with positive relationships are short-term bank debts and accounts payable. These findings are consistent with commercial motives, rather than a pure financial view, in the sense that financial distressed producers extend trade credit as a way of promoting their products and in turn increasing their sales.
Resumo:
New forms of natural interactions between human operators and UAVs (Unmanned Aerial Vehicle) are demanded by the military industry to achieve a better balance of the UAV control and the burden of the human operator. In this work, a human machine interface (HMI) based on a novel gesture recognition system using depth imagery is proposed for the control of UAVs. Hand gesture recognition based on depth imagery is a promising approach for HMIs because it is more intuitive, natural, and non-intrusive than other alternatives using complex controllers. The proposed system is based on a Support Vector Machine (SVM) classifier that uses spatio-temporal depth descriptors as input features. The designed descriptor is based on a variation of the Local Binary Pattern (LBP) technique to efficiently work with depth video sequences. Other major consideration is the especial hand sign language used for the UAV control. A tradeoff between the use of natural hand signs and the minimization of the inter-sign interference has been established. Promising results have been achieved in a depth based database of hand gestures especially developed for the validation of the proposed system.
Resumo:
El aprendizaje automático y la cienciometría son las disciplinas científicas que se tratan en esta tesis. El aprendizaje automático trata sobre la construcción y el estudio de algoritmos que puedan aprender a partir de datos, mientras que la cienciometría se ocupa principalmente del análisis de la ciencia desde una perspectiva cuantitativa. Hoy en día, los avances en el aprendizaje automático proporcionan las herramientas matemáticas y estadísticas para trabajar correctamente con la gran cantidad de datos cienciométricos almacenados en bases de datos bibliográficas. En este contexto, el uso de nuevos métodos de aprendizaje automático en aplicaciones de cienciometría es el foco de atención de esta tesis doctoral. Esta tesis propone nuevas contribuciones en el aprendizaje automático que podrían arrojar luz sobre el área de la cienciometría. Estas contribuciones están divididas en tres partes: Varios modelos supervisados (in)sensibles al coste son aprendidos para predecir el éxito científico de los artículos y los investigadores. Los modelos sensibles al coste no están interesados en maximizar la precisión de clasificación, sino en la minimización del coste total esperado derivado de los errores ocasionados. En este contexto, los editores de revistas científicas podrían disponer de una herramienta capaz de predecir el número de citas de un artículo en el fututo antes de ser publicado, mientras que los comités de promoción podrían predecir el incremento anual del índice h de los investigadores en los primeros años. Estos modelos predictivos podrían allanar el camino hacia nuevos sistemas de evaluación. Varios modelos gráficos probabilísticos son aprendidos para explotar y descubrir nuevas relaciones entre el gran número de índices bibliométricos existentes. En este contexto, la comunidad científica podría medir cómo algunos índices influyen en otros en términos probabilísticos y realizar propagación de la evidencia e inferencia abductiva para responder a preguntas bibliométricas. Además, la comunidad científica podría descubrir qué índices bibliométricos tienen mayor poder predictivo. Este es un problema de regresión multi-respuesta en el que el papel de cada variable, predictiva o respuesta, es desconocido de antemano. Los índices resultantes podrían ser muy útiles para la predicción, es decir, cuando se conocen sus valores, el conocimiento de cualquier valor no proporciona información sobre la predicción de otros índices bibliométricos. Un estudio bibliométrico sobre la investigación española en informática ha sido realizado bajo la cultura de publicar o morir. Este estudio se basa en una metodología de análisis de clusters que caracteriza la actividad en la investigación en términos de productividad, visibilidad, calidad, prestigio y colaboración internacional. Este estudio también analiza los efectos de la colaboración en la productividad y la visibilidad bajo diferentes circunstancias. ABSTRACT Machine learning and scientometrics are the scientific disciplines which are covered in this dissertation. Machine learning deals with the construction and study of algorithms that can learn from data, whereas scientometrics is mainly concerned with the analysis of science from a quantitative perspective. Nowadays, advances in machine learning provide the mathematical and statistical tools for properly working with the vast amount of scientometrics data stored in bibliographic databases. In this context, the use of novel machine learning methods in scientometrics applications is the focus of attention of this dissertation. This dissertation proposes new machine learning contributions which would shed light on the scientometrics area. These contributions are divided in three parts: Several supervised cost-(in)sensitive models are learned to predict the scientific success of articles and researchers. Cost-sensitive models are not interested in maximizing classification accuracy, but in minimizing the expected total cost of the error derived from mistakes in the classification process. In this context, publishers of scientific journals could have a tool capable of predicting the citation count of an article in the future before it is published, whereas promotion committees could predict the annual increase of the h-index of researchers within the first few years. These predictive models would pave the way for new assessment systems. Several probabilistic graphical models are learned to exploit and discover new relationships among the vast number of existing bibliometric indices. In this context, scientific community could measure how some indices influence others in probabilistic terms and perform evidence propagation and abduction inference for answering bibliometric questions. Also, scientific community could uncover which bibliometric indices have a higher predictive power. This is a multi-output regression problem where the role of each variable, predictive or response, is unknown beforehand. The resulting indices could be very useful for prediction purposes, that is, when their index values are known, knowledge of any index value provides no information on the prediction of other bibliometric indices. A scientometric study of the Spanish computer science research is performed under the publish-or-perish culture. This study is based on a cluster analysis methodology which characterizes the research activity in terms of productivity, visibility, quality, prestige and international collaboration. This study also analyzes the effects of collaboration on productivity and visibility under different circumstances.
Resumo:
The application of Linked Data technology to the publication of linguistic data promises to facilitate interoperability of these data and has lead to the emergence of the so called Linguistic Linked Data Cloud (LLD) in which linguistic data is published following the Linked Data principles. Three essential issues need to be addressed for such data to be easily exploitable by language technologies: i) appropriate machine-readable licensing information is needed for each dataset, ii) minimum quality standards for Linguistic Linked Data need to be defined, and iii) appropriate vocabularies for publishing Linguistic Linked Data resources are needed. We propose the notion of Licensed Linguistic Linked Data (3LD) in which different licensing models might co-exist, from totally open to more restrictive licenses through to completely closed datasets.