23 resultados para MULTI-RELATIONAL DATA MINING
em Universidad Politécnica de Madrid
Resumo:
Abstract Due to recent scientific and technological advances in information sys¬tems, it is now possible to perform almost every application on a mobile device. The need to make sense of such devices more intelligent opens an opportunity to design data mining algorithm that are able to autonomous execute in local devices to provide the device with knowledge. The problem behind autonomous mining deals with the proper configuration of the algorithm to produce the most appropriate results. Contextual information together with resource information of the device have a strong impact on both the feasibility of a particu¬lar execution and on the production of the proper patterns. On the other hand, performance of the algorithm expressed in terms of efficacy and efficiency highly depends on the features of the dataset to be analyzed together with values of the parameters of a particular implementation of an algorithm. However, few existing approaches deal with autonomous configuration of data mining algorithms and in any case they do not deal with contextual or resources information. Both issues are of particular significance, in particular for social net¬works application. In fact, the widespread use of social networks and consequently the amount of information shared have made the need of modeling context in social application a priority. Also the resource consumption has a crucial role in such platforms as the users are using social networks mainly on their mobile devices. This PhD thesis addresses the aforementioned open issues, focusing on i) Analyzing the behavior of algorithms, ii) mapping contextual and resources information to find the most appropriate configuration iii) applying the model for the case of a social recommender. Four main contributions are presented: - The EE-Model: is able to predict the behavior of a data mining algorithm in terms of resource consumed and accuracy of the mining model it will obtain. - The SC-Mapper: maps a situation defined by the context and resource state to a data mining configuration. - SOMAR: is a social activity (event and informal ongoings) recommender for mobile devices. - D-SOMAR: is an evolution of SOMAR which incorporates the configurator in order to provide updated recommendations. Finally, the experimental validation of the proposed contributions using synthetic and real datasets allows us to achieve the objectives and answer the research questions proposed for this dissertation.
Resumo:
Expert systems are built from knowledge traditionally elicited from the human expert. It is precisely knowledge elicitation from the expert that is the bottleneck in expert system construction. On the other hand, a data mining system, which automatically extracts knowledge, needs expert guidance on the successive decisions to be made in each of the system phases. In this context, expert knowledge and data mining discovered knowledge can cooperate, maximizing their individual capabilities: data mining discovered knowledge can be used as a complementary source of knowledge for the expert system, whereas expert knowledge can be used to guide the data mining process. This article summarizes different examples of systems where there is cooperation between expert knowledge and data mining discovered knowledge and reports our experience of such cooperation gathered from a medical diagnosis project called Intelligent Interpretation of Isokinetics Data, which we developed. From that experience, a series of lessons were learned throughout project development. Some of these lessons are generally applicable and others pertain exclusively to certain project types.
Resumo:
Acquired brain injury (ABI) is one of the leading causes of death and disability in the world and is associated with high health care costs as a result of the acute treatment and long term rehabilitation involved. Different algorithms and methods have been proposed to predict the effectiveness of rehabilitation programs. In general, research has focused on predicting the overall improvement of patients with ABI. The purpose of this study is the novel application of data mining (DM) techniques to predict the outcomes of cognitive rehabilitation in patients with ABI. We generate three predictive models that allow us to obtain new knowledge to evaluate and improve the effectiveness of the cognitive rehabilitation process. Decision tree (DT), multilayer perceptron (MLP) and general regression neural network (GRNN) have been used to construct the prediction models. 10-fold cross validation was carried out in order to test the algorithms, using the Institut Guttmann Neurorehabilitation Hospital (IG) patients database. Performance of the models was tested through specificity, sensitivity and accuracy analysis and confusion matrix analysis. The experimental results obtained by DT are clearly superior with a prediction average accuracy of 90.38%, while MLP and GRRN obtained a 78.7% and 75.96%, respectively. This study allows to increase the knowledge about the contributing factors of an ABI patient recovery and to estimate treatment efficacy in individual patients.
Resumo:
Ubiquitous computing software needs to be autonomous so that essential decisions such as how to configure its particular execution are self-determined. Moreover, data mining serves an important role for ubiquitous computing by providing intelligence to several types of ubiquitous computing applications. Thus, automating ubiquitous data mining is also crucial. We focus on the problem of automatically configuring the execution of a ubiquitous data mining algorithm. In our solution, we generate configuration decisions in a resource aware and context aware manner since the algorithm executes in an environment in which the context often changes and computing resources are often severely limited. We propose to analyze the execution behavior of the data mining algorithm by mining its past executions. By doing so, we discover the effects of resource and context states as well as parameter settings on the data mining quality. We argue that a classification model is appropriate for predicting the behavior of an algorithm?s execution and we concentrate on decision tree classifier. We also define taxonomy on data mining quality so that tradeoff between prediction accuracy and classification specificity of each behavior model that classifies by a different abstraction of quality, is scored for model selection. Behavior model constituents and class label transformations are formally defined and experimental validation of the proposed approach is also performed.
Resumo:
In this position paper, we claim that the need for time consuming data preparation and result interpretation tasks in knowledge discovery, as well as for costly expert consultation and consensus building activities required for ontology building can be reduced through exploiting the interplay of data mining and ontology engineering. The aim is to obtain in a semi-automatic way new knowledge from distributed data sources that can be used for inference and reasoning, as well as to guide the extraction of further knowledge from these data sources. The proposed approach is based on the creation of a novel knowledge discovery method relying on the combination, through an iterative ?feedbackloop?, of (a) data mining techniques to make emerge implicit models from data and (b) pattern-based ontology engineering to capture these models in reusable, conceptual and inferable artefacts.
Resumo:
Diabetes is the most common disease nowadays in all populations and in all age groups. diabetes contributing to heart disease, increases the risks of developing kidney disease, blindness, nerve damage, and blood vessel damage. Diabetes disease diagnosis via proper interpretation of the diabetes data is an important classification problem. Different techniques of artificial intelligence has been applied to diabetes problem. The purpose of this study is apply the artificial metaplasticity on multilayer perceptron (AMMLP) as a data mining (DM) technique for the diabetes disease diagnosis. The Pima Indians diabetes was used to test the proposed model AMMLP. The results obtained by AMMLP were compared with decision tree (DT), Bayesian classifier (BC) and other algorithms, recently proposed by other researchers, that were applied to the same database. The robustness of the algorithms are examined using classification accuracy, analysis of sensitivity and specificity, confusion matrix. The results obtained by AMMLP are superior to obtained by DT and BC.
Resumo:
There are a number of factors that contribute to the success of dental implant operations. Among others, is the choice of location in which the prosthetic tooth is to be implanted. This project offers a new approach to analyse jaw tissue for the purpose of selecting suitable locations for teeth implant operations. The application developed takes as input jaw computed tomography stack of slices and trims data outside the jaw area, which is the point of interest. It then reconstructs a three dimensional model of the jaw highlighting points of interest on the reconstructed model. On another hand, data mining techniques have been utilised in order to construct a prediction model based on an information dataset of previous dental implant operations with observed stability values. The goal is to find patterns within the dataset that would help predicting the success likelihood of an implant.
Resumo:
Abstract This paper presents a new method to extract knowledge from existing data sets, that is, to extract symbolic rules using the weights of an Artificial Neural Network. The method has been applied to a neural network with special architecture named Enhanced Neural Network (ENN). This architecture improves the results that have been obtained with multilayer perceptron (MLP). The relationship among the knowledge stored in the weights, the performance of the network and the new implemented algorithm to acquire rules from the weights is explained. The method itself gives a model to follow in the knowledge acquisition with ENN.
Resumo:
In the last few years there has been a heightened interest in data treatment and analysis with the aim of discovering hidden knowledge and eliciting relationships and patterns within this data. Data mining techniques (also known as Knowledge Discovery in Databases) have been applied over a wide range of fields such as marketing, investment, fraud detection, manufacturing, telecommunications and health. In this study, well-known data mining techniques such as artificial neural networks (ANN), genetic programming (GP), forward selection linear regression (LR) and k-means clustering techniques, are proposed to the health and sports community in order to aid with resistance training prescription. Appropriate resistance training prescription is effective for developing fitness, health and for enhancing general quality of life. Resistance exercise intensity is commonly prescribed as a percent of the one repetition maximum. 1RM, dynamic muscular strength, one repetition maximum or one execution maximum, is operationally defined as the heaviest load that can be moved over a specific range of motion, one time and with correct performance. The safety of the 1RM assessment has been questioned as such an enormous effort may lead to muscular injury. Prediction equations could help to tackle the problem of predicting the 1RM from submaximal loads, in order to avoid or at least, reduce the associated risks. We built different models from data on 30 men who performed up to 5 sets to exhaustion at different percentages of the 1RM in the bench press action, until reaching their actual 1RM. Also, a comparison of different existing prediction equations is carried out. The LR model seems to outperform the ANN and GP models for the 1RM prediction in the range between 1 and 10 repetitions. At 75% of the 1RM some subjects (n = 5) could perform 13 repetitions with proper technique in the bench press action, whilst other subjects (n = 20) performed statistically significant (p < 0:05) more repetitions at 70% than at 75% of their actual 1RM in the bench press action. Rate of perceived exertion (RPE) seems not to be a good predictor for 1RM when all the sets are performed until exhaustion, as no significant differences (p < 0:05) were found in the RPE at 75%, 80% and 90% of the 1RM. Also, years of experience and weekly hours of strength training are better correlated to 1RM (p < 0:05) than body weight. O'Connor et al. 1RM prediction equation seems to arise from the data gathered and seems to be the most accurate 1RM prediction equation from those proposed in literature and used in this study. Epley's 1RM prediction equation is reproduced by means of data simulation from 1RM literature equations. Finally, future lines of research are proposed related to the problem of the 1RM prediction by means of genetic algorithms, neural networks and clustering techniques. RESUMEN En los últimos años ha habido un creciente interés en el tratamiento y análisis de datos con el propósito de descubrir relaciones, patrones y conocimiento oculto en los mismos. Las técnicas de data mining (también llamadas de \Descubrimiento de conocimiento en bases de datos\) se han aplicado consistentemente a lo gran de un gran espectro de áreas como el marketing, inversiones, detección de fraude, producción industrial, telecomunicaciones y salud. En este estudio, técnicas bien conocidas de data mining como las redes neuronales artificiales (ANN), programación genética (GP), regresión lineal con selección hacia adelante (LR) y la técnica de clustering k-means, se proponen a la comunidad del deporte y la salud con el objetivo de ayudar con la prescripción del entrenamiento de fuerza. Una apropiada prescripción de entrenamiento de fuerza es efectiva no solo para mejorar el estado de forma general, sino para mejorar la salud e incrementar la calidad de vida. La intensidad en un ejercicio de fuerza se prescribe generalmente como un porcentaje de la repetición máxima. 1RM, fuerza muscular dinámica, una repetición máxima o una ejecución máxima, se define operacionalmente como la carga máxima que puede ser movida en un rango de movimiento específico, una vez y con una técnica correcta. La seguridad de las pruebas de 1RM ha sido cuestionada debido a que el gran esfuerzo requerido para llevarlas a cabo puede derivar en serias lesiones musculares. Las ecuaciones predictivas pueden ayudar a atajar el problema de la predicción de la 1RM con cargas sub-máximas y son empleadas con el propósito de eliminar o al menos, reducir los riesgos asociados. En este estudio, se construyeron distintos modelos a partir de los datos recogidos de 30 hombres que realizaron hasta 5 series al fallo en el ejercicio press de banca a distintos porcentajes de la 1RM, hasta llegar a su 1RM real. También se muestra una comparación de algunas de las distintas ecuaciones de predicción propuestas con anterioridad. El modelo LR parece superar a los modelos ANN y GP para la predicción de la 1RM entre 1 y 10 repeticiones. Al 75% de la 1RM algunos sujetos (n = 5) pudieron realizar 13 repeticiones con una técnica apropiada en el ejercicio press de banca, mientras que otros (n = 20) realizaron significativamente (p < 0:05) más repeticiones al 70% que al 75% de su 1RM en el press de banca. El ínndice de esfuerzo percibido (RPE) parece no ser un buen predictor del 1RM cuando todas las series se realizan al fallo, puesto que no existen diferencias signifiativas (p < 0:05) en el RPE al 75%, 80% y el 90% de la 1RM. Además, los años de experiencia y las horas semanales dedicadas al entrenamiento de fuerza están más correlacionadas con la 1RM (p < 0:05) que el peso corporal. La ecuación de O'Connor et al. parece surgir de los datos recogidos y parece ser la ecuación de predicción de 1RM más precisa de aquellas propuestas en la literatura y empleadas en este estudio. La ecuación de predicción de la 1RM de Epley es reproducida mediante simulación de datos a partir de algunas ecuaciones de predicción de la 1RM propuestas con anterioridad. Finalmente, se proponen futuras líneas de investigación relacionadas con el problema de la predicción de la 1RM mediante algoritmos genéticos, redes neuronales y técnicas de clustering.
Resumo:
La predicción del valor de las acciones en la bolsa de valores ha sido un tema importante en el campo de inversiones, que por varios años ha atraído tanto a académicos como a inversionistas. Esto supone que la información disponible en el pasado de la compañía que cotiza en bolsa tiene alguna implicación en el futuro del valor de la misma. Este trabajo está enfocado en ayudar a un persona u organismo que decida invertir en la bolsa de valores a través de gestión de compra o venta de acciones de una compañía a tomar decisiones respecto al tiempo de comprar o vender basado en el conocimiento obtenido de los valores históricos de las acciones de una compañía en la bolsa de valores. Esta decisión será inferida a partir de un modelo de regresión múltiple que es una de las técnicas de datamining. Para llevar conseguir esto se emplea una metodología conocida como CRISP-DM aplicada a los datos históricos de la compañía con mayor valor actual del NASDAQ.---ABSTRACT---The prediction of the value of shares in the stock market has been a major issue in the field of investments, which for several years has attracted both academics and investors. This means that the information available in the company last traded have any involvement in the future of the value of it. This work is focused on helping an investor decides to invest in the stock market through management buy or sell shares of a company to make decisions with respect to time to buy or sell based on the knowledge gained from the historic values of the shares of a company in the stock market. This decision will be inferred from a multiple regression model which is one of the techniques of data mining. To get this out a methodology known as CRISP-DM applied to historical data of the company with the highest current value of NASDAQ is used.
Resumo:
La diabetes mellitus es un trastorno en la metabolización de los carbohidratos, caracterizado por la nula o insuficiente segregación de insulina (hormona producida por el páncreas), como resultado del mal funcionamiento de la parte endocrina del páncreas, o de una creciente resistencia del organismo a esta hormona. Esto implica, que tras el proceso digestivo, los alimentos que ingerimos se transforman en otros compuestos químicos más pequeños mediante los tejidos exocrinos. La ausencia o poca efectividad de esta hormona polipéptida, no permite metabolizar los carbohidratos ingeridos provocando dos consecuencias: Aumento de la concentración de glucosa en sangre, ya que las células no pueden metabolizarla; consumo de ácidos grasos mediante el hígado, liberando cuerpos cetónicos para aportar la energía a las células. Esta situación expone al enfermo crónico, a una concentración de glucosa en sangre muy elevada, denominado hiperglucemia, la cual puede producir a medio o largo múltiples problemas médicos: oftalmológicos, renales, cardiovasculares, cerebrovasculares, neurológicos… La diabetes representa un gran problema de salud pública y es la enfermedad más común en los países desarrollados por varios factores como la obesidad, la vida sedentaria, que facilitan la aparición de esta enfermedad. Mediante el presente proyecto trabajaremos con los datos de experimentación clínica de pacientes con diabetes de tipo 1, enfermedad autoinmune en la que son destruidas las células beta del páncreas (productoras de insulina) resultando necesaria la administración de insulina exógena. Dicho esto, el paciente con diabetes tipo 1 deberá seguir un tratamiento con insulina administrada por la vía subcutánea, adaptado a sus necesidades metabólicas y a sus hábitos de vida. Para abordar esta situación de regulación del control metabólico del enfermo, mediante una terapia de insulina, no serviremos del proyecto “Páncreas Endocrino Artificial” (PEA), el cual consta de una bomba de infusión de insulina, un sensor continuo de glucosa, y un algoritmo de control en lazo cerrado. El objetivo principal del PEA es aportar al paciente precisión, eficacia y seguridad en cuanto a la normalización del control glucémico y reducción del riesgo de hipoglucemias. El PEA se instala mediante vía subcutánea, por lo que, el retardo introducido por la acción de la insulina, el retardo de la medida de glucosa, así como los errores introducidos por los sensores continuos de glucosa cuando, se descalibran dificultando el empleo de un algoritmo de control. Llegados a este punto debemos modelar la glucosa del paciente mediante sistemas predictivos. Un modelo, es todo aquel elemento que nos permita predecir el comportamiento de un sistema mediante la introducción de variables de entrada. De este modo lo que conseguimos, es una predicción de los estados futuros en los que se puede encontrar la glucosa del paciente, sirviéndonos de variables de entrada de insulina, ingesta y glucosa ya conocidas, por ser las sucedidas con anterioridad en el tiempo. Cuando empleamos el predictor de glucosa, utilizando parámetros obtenidos en tiempo real, el controlador es capaz de indicar el nivel futuro de la glucosa para la toma de decisones del controlador CL. Los predictores que se están empleando actualmente en el PEA no están funcionando correctamente por la cantidad de información y variables que debe de manejar. Data Mining, también referenciado como Descubrimiento del Conocimiento en Bases de Datos (Knowledge Discovery in Databases o KDD), ha sido definida como el proceso de extracción no trivial de información implícita, previamente desconocida y potencialmente útil. Todo ello, sirviéndonos las siguientes fases del proceso de extracción del conocimiento: selección de datos, pre-procesado, transformación, minería de datos, interpretación de los resultados, evaluación y obtención del conocimiento. Con todo este proceso buscamos generar un único modelo insulina glucosa que se ajuste de forma individual a cada paciente y sea capaz, al mismo tiempo, de predecir los estados futuros glucosa con cálculos en tiempo real, a través de unos parámetros introducidos. Este trabajo busca extraer la información contenida en una base de datos de pacientes diabéticos tipo 1 obtenidos a partir de la experimentación clínica. Para ello emplearemos técnicas de Data Mining. Para la consecución del objetivo implícito a este proyecto hemos procedido a implementar una interfaz gráfica que nos guía a través del proceso del KDD (con información gráfica y estadística) de cada punto del proceso. En lo que respecta a la parte de la minería de datos, nos hemos servido de la denominada herramienta de WEKA, en la que a través de Java controlamos todas sus funciones, para implementarlas por medio del programa creado. Otorgando finalmente, una mayor potencialidad al proyecto con la posibilidad de implementar el servicio de los dispositivos Android por la potencial capacidad de portar el código. Mediante estos dispositivos y lo expuesto en el proyecto se podrían implementar o incluso crear nuevas aplicaciones novedosas y muy útiles para este campo. Como conclusión del proyecto, y tras un exhaustivo análisis de los resultados obtenidos, podemos apreciar como logramos obtener el modelo insulina-glucosa de cada paciente. ABSTRACT. The diabetes mellitus is a metabolic disorder, characterized by the low or none insulin production (a hormone produced by the pancreas), as a result of the malfunctioning of the endocrine pancreas part or by an increasing resistance of the organism to this hormone. This implies that, after the digestive process, the food we consume is transformed into smaller chemical compounds, through the exocrine tissues. The absence or limited effectiveness of this polypeptide hormone, does not allow to metabolize the ingested carbohydrates provoking two consequences: Increase of the glucose concentration in blood, as the cells are unable to metabolize it; fatty acid intake through the liver, releasing ketone bodies to provide energy to the cells. This situation exposes the chronic patient to high blood glucose levels, named hyperglycemia, which may cause in the medium or long term multiple medical problems: ophthalmological, renal, cardiovascular, cerebrum-vascular, neurological … The diabetes represents a great public health problem and is the most common disease in the developed countries, by several factors such as the obesity or sedentary life, which facilitate the appearance of this disease. Through this project we will work with clinical experimentation data of patients with diabetes of type 1, autoimmune disease in which beta cells of the pancreas (producers of insulin) are destroyed resulting necessary the exogenous insulin administration. That said, the patient with diabetes type 1 will have to follow a treatment with insulin, administered by the subcutaneous route, adapted to his metabolic needs and to his life habits. To deal with this situation of metabolic control regulation of the patient, through an insulin therapy, we shall be using the “Endocrine Artificial Pancreas " (PEA), which consists of a bomb of insulin infusion, a constant glucose sensor, and a control algorithm in closed bow. The principal aim of the PEA is providing the patient precision, efficiency and safety regarding the normalization of the glycemic control and hypoglycemia risk reduction". The PEA establishes through subcutaneous route, consequently, the delay introduced by the insulin action, the delay of the glucose measure, as well as the mistakes introduced by the constant glucose sensors when, decalibrate, impede the employment of an algorithm of control. At this stage we must shape the patient glucose levels through predictive systems. A model is all that element or set of elements which will allow us to predict the behavior of a system by introducing input variables. Thus what we obtain, is a prediction of the future stages in which it is possible to find the patient glucose level, being served of input insulin, ingestion and glucose variables already known, for being the ones happened previously in the time. When we use the glucose predictor, using obtained real time parameters, the controller is capable of indicating the future level of the glucose for the decision capture CL controller. The predictors that are being used nowadays in the PEA are not working correctly for the amount of information and variables that it need to handle. Data Mining, also indexed as Knowledge Discovery in Databases or KDD, has been defined as the not trivial extraction process of implicit information, previously unknown and potentially useful. All this, using the following phases of the knowledge extraction process: selection of information, pre- processing, transformation, data mining, results interpretation, evaluation and knowledge acquisition. With all this process we seek to generate the unique insulin glucose model that adjusts individually and in a personalized way for each patient form and being capable, at the same time, of predicting the future conditions with real time calculations, across few input parameters. This project of end of grade seeks to extract the information contained in a database of type 1 diabetics patients, obtained from clinical experimentation. For it, we will use technologies of Data Mining. For the attainment of the aim implicit to this project we have proceeded to implement a graphical interface that will guide us across the process of the KDD (with graphical and statistical information) of every point of the process. Regarding the data mining part, we have been served by a tool called WEKA's tool called, in which across Java, we control all of its functions to implement them by means of the created program. Finally granting a higher potential to the project with the possibility of implementing the service for Android devices, porting the code. Through these devices and what has been exposed in the project they might help or even create new and very useful applications for this field. As a conclusion of the project, and after an exhaustive analysis of the obtained results, we can show how we achieve to obtain the insulin–glucose model for each patient.
Resumo:
La gran cantidad de datos que se registran diariamente en los sistemas de base de datos de las organizaciones ha generado la necesidad de analizarla. Sin embargo, se enfrentan a la complejidad de procesar enormes volúmenes de datos a través de métodos tradicionales de análisis. Además, dentro de un contexto globalizado y competitivo las organizaciones se mantienen en la búsqueda constante de mejorar sus procesos, para lo cual requieren herramientas que les permitan tomar mejores decisiones. Esto implica estar mejor informado y conocer su historia digital para describir sus procesos y poder anticipar (predecir) eventos no previstos. Estos nuevos requerimientos de análisis de datos ha motivado el desarrollo creciente de proyectos de minería de datos. El proceso de minería de datos busca obtener desde un conjunto masivo de datos, modelos que permitan describir los datos o predecir nuevas instancias en el conjunto. Implica etapas de: preparación de los datos, procesamiento parcial o totalmente automatizado para identificar modelos en los datos, para luego obtener como salida patrones, relaciones o reglas. Esta salida debe significar un nuevo conocimiento para la organización, útil y comprensible para los usuarios finales, y que pueda ser integrado a los procesos para apoyar la toma de decisiones. Sin embargo, la mayor dificultad es justamente lograr que el analista de datos, que interviene en todo este proceso, pueda identificar modelos lo cual es una tarea compleja y muchas veces requiere de la experiencia, no sólo del analista de datos, sino que también del experto en el dominio del problema. Una forma de apoyar el análisis de datos, modelos y patrones es a través de su representación visual, utilizando las capacidades de percepción visual del ser humano, la cual puede detectar patrones con mayor facilidad. Bajo este enfoque, la visualización ha sido utilizada en minería datos, mayormente en el análisis descriptivo de los datos (entrada) y en la presentación de los patrones (salida), dejando limitado este paradigma para el análisis de modelos. El presente documento describe el desarrollo de la Tesis Doctoral denominada “Nuevos Esquemas de Visualizaciones para Mejorar la Comprensibilidad de Modelos de Data Mining”. Esta investigación busca aportar con un enfoque de visualización para apoyar la comprensión de modelos minería de datos, para esto propone la metáfora de modelos visualmente aumentados. ABSTRACT The large amount of data to be recorded daily in the systems database of organizations has generated the need to analyze it. However, faced with the complexity of processing huge volumes of data over traditional methods of analysis. Moreover, in a globalized and competitive environment organizations are kept constantly looking to improve their processes, which require tools that allow them to make better decisions. This involves being bettered informed and knows your digital story to describe its processes and to anticipate (predict) unanticipated events. These new requirements of data analysis, has led to the increasing development of data-mining projects. The data-mining process seeks to obtain from a massive data set, models to describe the data or predict new instances in the set. It involves steps of data preparation, partially or fully automated processing to identify patterns in the data, and then get output patterns, relationships or rules. This output must mean new knowledge for the organization, useful and understandable for end users, and can be integrated into the process to support decision-making. However, the biggest challenge is just getting the data analyst involved in this process, which can identify models is complex and often requires experience not only of the data analyst, but also the expert in the problem domain. One way to support the analysis of the data, models and patterns, is through its visual representation, i.e., using the capabilities of human visual perception, which can detect patterns easily in any context. Under this approach, the visualization has been used in data mining, mostly in exploratory data analysis (input) and the presentation of the patterns (output), leaving limited this paradigm for analyzing models. This document describes the development of the doctoral thesis entitled "New Visualizations Schemes to Improve Understandability of Data-Mining Models". This research aims to provide a visualization approach to support understanding of data mining models for this proposed metaphor visually enhanced models.
Resumo:
Hoy en día, con la evolución continua y rápida de las tecnologías de la información y los dispositivos de computación, se recogen y almacenan continuamente grandes volúmenes de datos en distintos dominios y a través de diversas aplicaciones del mundo real. La extracción de conocimiento útil de una cantidad tan enorme de datos no se puede realizar habitualmente de forma manual, y requiere el uso de técnicas adecuadas de aprendizaje automático y de minería de datos. La clasificación es una de las técnicas más importantes que ha sido aplicada con éxito a varias áreas. En general, la clasificación se compone de dos pasos principales: en primer lugar, aprender un modelo de clasificación o clasificador a partir de un conjunto de datos de entrenamiento, y en segundo lugar, clasificar las nuevas instancias de datos utilizando el clasificador aprendido. La clasificación es supervisada cuando todas las etiquetas están presentes en los datos de entrenamiento (es decir, datos completamente etiquetados), semi-supervisada cuando sólo algunas etiquetas son conocidas (es decir, datos parcialmente etiquetados), y no supervisada cuando todas las etiquetas están ausentes en los datos de entrenamiento (es decir, datos no etiquetados). Además, aparte de esta taxonomía, el problema de clasificación se puede categorizar en unidimensional o multidimensional en función del número de variables clase, una o más, respectivamente; o también puede ser categorizado en estacionario o cambiante con el tiempo en función de las características de los datos y de la tasa de cambio subyacente. A lo largo de esta tesis, tratamos el problema de clasificación desde tres perspectivas diferentes, a saber, clasificación supervisada multidimensional estacionaria, clasificación semisupervisada unidimensional cambiante con el tiempo, y clasificación supervisada multidimensional cambiante con el tiempo. Para llevar a cabo esta tarea, hemos usado básicamente los clasificadores Bayesianos como modelos. La primera contribución, dirigiéndose al problema de clasificación supervisada multidimensional estacionaria, se compone de dos nuevos métodos de aprendizaje de clasificadores Bayesianos multidimensionales a partir de datos estacionarios. Los métodos se proponen desde dos puntos de vista diferentes. El primer método, denominado CB-MBC, se basa en una estrategia de envoltura de selección de variables que es voraz y hacia delante, mientras que el segundo, denominado MB-MBC, es una estrategia de filtrado de variables con una aproximación basada en restricciones y en el manto de Markov. Ambos métodos han sido aplicados a dos problemas reales importantes, a saber, la predicción de los inhibidores de la transcriptasa inversa y de la proteasa para el problema de infección por el virus de la inmunodeficiencia humana tipo 1 (HIV-1), y la predicción del European Quality of Life-5 Dimensions (EQ-5D) a partir de los cuestionarios de la enfermedad de Parkinson con 39 ítems (PDQ-39). El estudio experimental incluye comparaciones de CB-MBC y MB-MBC con los métodos del estado del arte de la clasificación multidimensional, así como con métodos comúnmente utilizados para resolver el problema de predicción de la enfermedad de Parkinson, a saber, la regresión logística multinomial, mínimos cuadrados ordinarios, y mínimas desviaciones absolutas censuradas. En ambas aplicaciones, los resultados han sido prometedores con respecto a la precisión de la clasificación, así como en relación al análisis de las estructuras gráficas que identifican interacciones conocidas y novedosas entre las variables. La segunda contribución, referida al problema de clasificación semi-supervisada unidimensional cambiante con el tiempo, consiste en un método nuevo (CPL-DS) para clasificar flujos de datos parcialmente etiquetados. Los flujos de datos difieren de los conjuntos de datos estacionarios en su proceso de generación muy rápido y en su aspecto de cambio de concepto. Es decir, los conceptos aprendidos y/o la distribución subyacente están probablemente cambiando y evolucionando en el tiempo, lo que hace que el modelo de clasificación actual sea obsoleto y deba ser actualizado. CPL-DS utiliza la divergencia de Kullback-Leibler y el método de bootstrapping para cuantificar y detectar tres tipos posibles de cambio: en las predictoras, en la a posteriori de la clase o en ambas. Después, si se detecta cualquier cambio, un nuevo modelo de clasificación se aprende usando el algoritmo EM; si no, el modelo de clasificación actual se mantiene sin modificaciones. CPL-DS es general, ya que puede ser aplicado a varios modelos de clasificación. Usando dos modelos diferentes, el clasificador naive Bayes y la regresión logística, CPL-DS se ha probado con flujos de datos sintéticos y también se ha aplicado al problema real de la detección de código malware, en el cual los nuevos ficheros recibidos deben ser continuamente clasificados en malware o goodware. Los resultados experimentales muestran que nuestro método es efectivo para la detección de diferentes tipos de cambio a partir de los flujos de datos parcialmente etiquetados y también tiene una buena precisión de la clasificación. Finalmente, la tercera contribución, sobre el problema de clasificación supervisada multidimensional cambiante con el tiempo, consiste en dos métodos adaptativos, a saber, Locally Adpative-MB-MBC (LA-MB-MBC) y Globally Adpative-MB-MBC (GA-MB-MBC). Ambos métodos monitorizan el cambio de concepto a lo largo del tiempo utilizando la log-verosimilitud media como métrica y el test de Page-Hinkley. Luego, si se detecta un cambio de concepto, LA-MB-MBC adapta el actual clasificador Bayesiano multidimensional localmente alrededor de cada nodo cambiado, mientras que GA-MB-MBC aprende un nuevo clasificador Bayesiano multidimensional. El estudio experimental realizado usando flujos de datos sintéticos multidimensionales indica los méritos de los métodos adaptativos propuestos. ABSTRACT Nowadays, with the ongoing and rapid evolution of information technology and computing devices, large volumes of data are continuously collected and stored in different domains and through various real-world applications. Extracting useful knowledge from such a huge amount of data usually cannot be performed manually, and requires the use of adequate machine learning and data mining techniques. Classification is one of the most important techniques that has been successfully applied to several areas. Roughly speaking, classification consists of two main steps: first, learn a classification model or classifier from an available training data, and secondly, classify the new incoming unseen data instances using the learned classifier. Classification is supervised when the whole class values are present in the training data (i.e., fully labeled data), semi-supervised when only some class values are known (i.e., partially labeled data), and unsupervised when the whole class values are missing in the training data (i.e., unlabeled data). In addition, besides this taxonomy, the classification problem can be categorized into uni-dimensional or multi-dimensional depending on the number of class variables, one or more, respectively; or can be also categorized into stationary or streaming depending on the characteristics of the data and the rate of change underlying it. Through this thesis, we deal with the classification problem under three different settings, namely, supervised multi-dimensional stationary classification, semi-supervised unidimensional streaming classification, and supervised multi-dimensional streaming classification. To accomplish this task, we basically used Bayesian network classifiers as models. The first contribution, addressing the supervised multi-dimensional stationary classification problem, consists of two new methods for learning multi-dimensional Bayesian network classifiers from stationary data. They are proposed from two different points of view. The first method, named CB-MBC, is based on a wrapper greedy forward selection approach, while the second one, named MB-MBC, is a filter constraint-based approach based on Markov blankets. Both methods are applied to two important real-world problems, namely, the prediction of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and protease inhibitors, and the prediction of the European Quality of Life-5 Dimensions (EQ-5D) from 39-item Parkinson’s Disease Questionnaire (PDQ-39). The experimental study includes comparisons of CB-MBC and MB-MBC against state-of-the-art multi-dimensional classification methods, as well as against commonly used methods for solving the Parkinson’s disease prediction problem, namely, multinomial logistic regression, ordinary least squares, and censored least absolute deviations. For both considered case studies, results are promising in terms of classification accuracy as well as regarding the analysis of the learned MBC graphical structures identifying known and novel interactions among variables. The second contribution, addressing the semi-supervised uni-dimensional streaming classification problem, consists of a novel method (CPL-DS) for classifying partially labeled data streams. Data streams differ from the stationary data sets by their highly rapid generation process and their concept-drifting aspect. That is, the learned concepts and/or the underlying distribution are likely changing and evolving over time, which makes the current classification model out-of-date requiring to be updated. CPL-DS uses the Kullback-Leibler divergence and bootstrapping method to quantify and detect three possible kinds of drift: feature, conditional or dual. Then, if any occurs, a new classification model is learned using the expectation-maximization algorithm; otherwise, the current classification model is kept unchanged. CPL-DS is general as it can be applied to several classification models. Using two different models, namely, naive Bayes classifier and logistic regression, CPL-DS is tested with synthetic data streams and applied to the real-world problem of malware detection, where the new received files should be continuously classified into malware or goodware. Experimental results show that our approach is effective for detecting different kinds of drift from partially labeled data streams, as well as having a good classification performance. Finally, the third contribution, addressing the supervised multi-dimensional streaming classification problem, consists of two adaptive methods, namely, Locally Adaptive-MB-MBC (LA-MB-MBC) and Globally Adaptive-MB-MBC (GA-MB-MBC). Both methods monitor the concept drift over time using the average log-likelihood score and the Page-Hinkley test. Then, if a drift is detected, LA-MB-MBC adapts the current multi-dimensional Bayesian network classifier locally around each changed node, whereas GA-MB-MBC learns a new multi-dimensional Bayesian network classifier from scratch. Experimental study carried out using synthetic multi-dimensional data streams shows the merits of both proposed adaptive methods.
Resumo:
La seguridad verificada es una metodología para demostrar propiedades de seguridad de los sistemas informáticos que se destaca por las altas garantías de corrección que provee. Los sistemas informáticos se modelan como programas probabilísticos y para probar que verifican una determinada propiedad de seguridad se utilizan técnicas rigurosas basadas en modelos matemáticos de los programas. En particular, la seguridad verificada promueve el uso de demostradores de teoremas interactivos o automáticos para construir demostraciones completamente formales cuya corrección es certificada mecánicamente (por ordenador). La seguridad verificada demostró ser una técnica muy efectiva para razonar sobre diversas nociones de seguridad en el área de criptografía. Sin embargo, no ha podido cubrir un importante conjunto de nociones de seguridad “aproximada”. La característica distintiva de estas nociones de seguridad es que se expresan como una condición de “similitud” entre las distribuciones de salida de dos programas probabilísticos y esta similitud se cuantifica usando alguna noción de distancia entre distribuciones de probabilidad. Este conjunto incluye destacadas nociones de seguridad de diversas áreas como la minería de datos privados, el análisis de flujo de información y la criptografía. Ejemplos representativos de estas nociones de seguridad son la indiferenciabilidad, que permite reemplazar un componente idealizado de un sistema por una implementación concreta (sin alterar significativamente sus propiedades de seguridad), o la privacidad diferencial, una noción de privacidad que ha recibido mucha atención en los últimos años y tiene como objetivo evitar la publicación datos confidenciales en la minería de datos. La falta de técnicas rigurosas que permitan verificar formalmente este tipo de propiedades constituye un notable problema abierto que tiene que ser abordado. En esta tesis introducimos varias lógicas de programa quantitativas para razonar sobre esta clase de propiedades de seguridad. Nuestra principal contribución teórica es una versión quantitativa de una lógica de Hoare relacional para programas probabilísticos. Las pruebas de correción de estas lógicas son completamente formalizadas en el asistente de pruebas Coq. Desarrollamos, además, una herramienta para razonar sobre propiedades de programas a través de estas lógicas extendiendo CertiCrypt, un framework para verificar pruebas de criptografía en Coq. Confirmamos la efectividad y aplicabilidad de nuestra metodología construyendo pruebas certificadas por ordendor de varios sistemas cuyo análisis estaba fuera del alcance de la seguridad verificada. Esto incluye, entre otros, una meta-construcción para diseñar funciones de hash “seguras” sobre curvas elípticas y algoritmos diferencialmente privados para varios problemas de optimización combinatoria de la literatura reciente. ABSTRACT The verified security methodology is an emerging approach to build high assurance proofs about security properties of computer systems. Computer systems are modeled as probabilistic programs and one relies on rigorous program semantics techniques to prove that they comply with a given security goal. In particular, it advocates the use of interactive theorem provers or automated provers to build fully formal machine-checked versions of these security proofs. The verified security methodology has proved successful in modeling and reasoning about several standard security notions in the area of cryptography. However, it has fallen short of covering an important class of approximate, quantitative security notions. The distinguishing characteristic of this class of security notions is that they are stated as a “similarity” condition between the output distributions of two probabilistic programs, and this similarity is quantified using some notion of distance between probability distributions. This class comprises prominent security notions from multiple areas such as private data analysis, information flow analysis and cryptography. These include, for instance, indifferentiability, which enables securely replacing an idealized component of system with a concrete implementation, and differential privacy, a notion of privacy-preserving data mining that has received a great deal of attention in the last few years. The lack of rigorous techniques for verifying these properties is thus an important problem that needs to be addressed. In this dissertation we introduce several quantitative program logics to reason about this class of security notions. Our main theoretical contribution is, in particular, a quantitative variant of a full-fledged relational Hoare logic for probabilistic programs. The soundness of these logics is fully formalized in the Coq proof-assistant and tool support is also available through an extension of CertiCrypt, a framework to verify cryptographic proofs in Coq. We validate the applicability of our approach by building fully machine-checked proofs for several systems that were out of the reach of the verified security methodology. These comprise, among others, a construction to build “safe” hash functions into elliptic curves and differentially private algorithms for several combinatorial optimization problems from the recent literature.
Resumo:
In recent years, a plethora of approaches have been proposed to deal with the increasingly challenging task of multi-output regression. This paper provides a survey on state-of-the-art multi-output regression methods, that are categorized as problem transformation and algorithm adaptation methods. In addition, we present the mostly used performance evaluation measures, publicly available data sets for multi-output regression real-world problems, as well as open-source software frameworks.